64 research outputs found

    Neue linguistische Methoden und arbeitstechnische Verfahren in der Erschliessung der ägyptischen Grammatik

    Get PDF
    15 páginas, 1 tabla, 6 figuras.Does diversity beget diversity? Diversity includes a diversity of concepts because it is linked to variability in and of life and can be applied to multiple levels. The connections between multiple levels of diversity are poorly understood. Here, we investigated the relationships between genetic, bacterial, and chemical diversity of the endangered Atlanto-Mediterranean sponge Spongia lamella. These levels of diversity are intrinsically related to sponge evolution and could have strong conservation implications. We used microsatellite markers, denaturing gel gradient electrophoresis and quantitative polymerase chain reaction, and high performance liquid chromatography to quantify genetic, bacterial, and chemical diversity of nine sponge populations. We then used correlations to test whether these diversity levels covaried. We found that sponge populations differed significantly in genetic, bacterial, and chemical diversity. We also found a strong geographic pattern of increasing genetic, bacterial, and chemical dissimilarity with increasing geographic distance between populations. However, we failed to detect significant correlations between the three levels of diversity investigated in our study. Our results suggest that diversity fails to beget diversity within a single species and indicates that a diversity of factors regulates a diversity of diversities, which highlights the complex nature of the mechanisms behind diversityResearch funded by grants from the Agence Nationale de la Recherche (ECIMAR), from the Spanish Ministry of Science and Technology SOLID (CTM2010-17755) and Benthomics (CTM2010-22218-C02-01) and the BIOCAPITAL project (MRTN-CT-2004-512301) of the European Union. This is a contribution of the Consolidated Research Group ‘‘Grupo de Ecologı´a Bento´nica,’’ SGR2009-655.Peer reviewe

    Involvement of the exomer complex in the polarized transport of Ena1 required for Saccharomyces cerevisiae survival against toxic cations

    Get PDF
    [EN] Exomer is an adaptor complex required for the direct transport of a selected number of cargoes from the trans-Golgi network (TGN) to the plasma membrane in Saccharomyces cerevisiae However, exomer mutants are highly sensitive to increased concentrations of alkali metal cations, a situation that remains unexplained by the lack of transport of any known cargoes. Here we identify several HAL genes that act as multicopy suppressors of this sensitivity and are connected to the reduced function of the sodium ATPase Ena1. Furthermore, we find that Ena1 is dependent on exomer function. Even though Ena1 can reach the plasma membrane independently of exomer, polarized delivery of Ena1 to the bud requires functional exomer. Moreover, exomer is required for full induction of Ena1 expression after cationic stress by facilitating the plasma membrane recruitment of the molecular machinery involved in Rim101 processing and activation of the RIM101 pathway in response to stress. Both the defective localization and the reduced levels of Ena1 contribute to the sensitivity of exomer mutants to alkali metal cations. Our work thus expands the spectrum of exomer-dependent proteins and provides a link to a more general role of exomer in TGN organization.We acknowledge Emma Keck for English language revision. We also thank members of the Translucent group, J. Arino, J. Ramos, and L. Yenush, for many useful discussions throughout this work and especially L. Yenush for her generous gift of strains and reagents. The help of O. Vincent was essential for developing the work involving RIM101. We also thank R. Valle for her technical assistance at the CR Laboratory. M. Trautwein is acknowledged for data acquisition and discussions during the early stages of the project. C.A. is supported by a USAL predoctoral fellowship. Work at the Spang laboratory was supported by the University of Basel and the Swiss National Science Foundation (31003A-141207 and 310030B-163480). C.R. was supported by grant SA073U14 from the Regional Government of Castilla y Leon and by grant BFU2013-48582-C2-1-P from the CICYT/FEDER Spanish program. J.M.M. acknowledges the financial support from Universitat Politecnica de Valencia project PAID-06-10-1496.Anton, C.; Zanolari, B.; Arcones, I.; Wang, C.; Mulet, JM.; Spang, A.; Roncero, C. (2017). Involvement of the exomer complex in the polarized transport of Ena1 required for Saccharomyces cerevisiae survival against toxic cations. Molecular Biology of the Cell. 28(25):3672-3685. https://doi.org/10.1091/mbc.E17-09-0549S367236852825Ariño, J., Ramos, J., & Sychrová, H. (2010). Alkali Metal Cation Transport and Homeostasis in Yeasts. Microbiology and Molecular Biology Reviews, 74(1), 95-120. doi:10.1128/mmbr.00042-09Bard, F., & Malhotra, V. (2006). The Formation of TGN-to-Plasma-Membrane Transport Carriers. Annual Review of Cell and Developmental Biology, 22(1), 439-455. doi:10.1146/annurev.cellbio.21.012704.133126Barfield, R. M., Fromme, J. C., & Schekman, R. (2009). The Exomer Coat Complex Transports Fus1p to the Plasma Membrane via a Novel Plasma Membrane Sorting Signal in Yeast. Molecular Biology of the Cell, 20(23), 4985-4996. doi:10.1091/mbc.e09-04-0324Bonifacino, J. S. (2014). Adaptor proteins involved in polarized sorting. Journal of Cell Biology, 204(1), 7-17. doi:10.1083/jcb.201310021Bonifacino, J. S., & Glick, B. S. (2004). The Mechanisms of Vesicle Budding and Fusion. Cell, 116(2), 153-166. doi:10.1016/s0092-8674(03)01079-1Bonifacino, J. S., & Lippincott-Schwartz, J. (2003). Coat proteins: shaping membrane transport. Nature Reviews Molecular Cell Biology, 4(5), 409-414. doi:10.1038/nrm1099Carlson, M., & Botstein, D. (1982). Two differentially regulated mRNAs with different 5′ ends encode secreted and intracellular forms of yeast invertase. Cell, 28(1), 145-154. doi:10.1016/0092-8674(82)90384-1Costanzo, M., Baryshnikova, A., Bellay, J., Kim, Y., Spear, E. D., Sevier, C. S., … Mostafavi, S. (2010). The Genetic Landscape of a Cell. Science, 327(5964), 425-431. doi:10.1126/science.1180823De Matteis, M. A., & Luini, A. (2008). Exiting the Golgi complex. Nature Reviews Molecular Cell Biology, 9(4), 273-284. doi:10.1038/nrm2378De Nadal, E., Clotet, J., Posas, F., Serrano, R., Gomez, N., & Arino, J. (1998). The yeast halotolerance determinant Hal3p is an inhibitory subunit of the Ppz1p Ser/Thr protein phosphatase. Proceedings of the National Academy of Sciences, 95(13), 7357-7362. doi:10.1073/pnas.95.13.7357Drubin, D. G., & Nelson, W. J. (1996). Origins of Cell Polarity. Cell, 84(3), 335-344. doi:10.1016/s0092-8674(00)81278-7Fell, G. L., Munson, A. M., Croston, M. A., & Rosenwald, A. G. (2011). Identification of Yeast Genes Involved in K+Homeostasis: Loss of Membrane Traffic Genes Affects K+Uptake. G3: Genes|Genomes|Genetics, 1(1), 43-56. doi:10.1534/g3.111.000166Ferrando, A., Kron, S. J., Rios, G., Fink, G. R., & Serrano, R. (1995). Regulation of cation transport in Saccharomyces cerevisiae by the salt tolerance gene HAL3. Molecular and Cellular Biology, 15(10), 5470-5481. doi:10.1128/mcb.15.10.5470Forsmark, A., Rossi, G., Wadskog, I., Brennwald, P., Warringer, J., & Adler, L. (2011). Quantitative Proteomics of Yeast Post-Golgi Vesicles Reveals a Discriminating Role for Sro7p in Protein Secretion. Traffic, 12(6), 740-753. doi:10.1111/j.1600-0854.2011.01186.xGaber, R. F., Styles, C. A., & Fink, G. R. (1988). TRK1 encodes a plasma membrane protein required for high-affinity potassium transport in Saccharomyces cerevisiae. Molecular and Cellular Biology, 8(7), 2848-2859. doi:10.1128/mcb.8.7.2848Galindo, A., Calcagno-Pizarelli, A. M., Arst, H. N., & Penalva, M. A. (2012). An ordered pathway for the assembly of fungal ESCRT-containing ambient pH signalling complexes at the plasma membrane. Journal of Cell Science, 125(7), 1784-1795. doi:10.1242/jcs.098897Goldstein, A. L., & McCusker, J. H. (1999). Three new dominant drug resistance cassettes for gene disruption inSaccharomyces cerevisiae. Yeast, 15(14), 1541-1553. doi:10.1002/(sici)1097-0061(199910)15:143.0.co;2-kHayashi, M., Fukuzawa, T., Sorimachi, H., & Maeda, T. (2005). Constitutive Activation of the pH-Responsive Rim101 Pathway in Yeast Mutants Defective in Late Steps of the MVB/ESCRT Pathway. Molecular and Cellular Biology, 25(21), 9478-9490. doi:10.1128/mcb.25.21.9478-9490.2005Herrador, A., Herranz, S., Lara, D., & Vincent, O. (2009). Recruitment of the ESCRT Machinery to a Putative Seven-Transmembrane-Domain Receptor Is Mediated by an Arrestin-Related Protein. Molecular and Cellular Biology, 30(4), 897-907. doi:10.1128/mcb.00132-09Herrador, A., Livas, D., Soletto, L., Becuwe, M., Léon, S., & Vincent, O. (2015). Casein kinase 1 controls the activation threshold of an α-arrestin by multisite phosphorylation of the interdomain hinge. Molecular Biology of the Cell, 26(11), 2128-2138. doi:10.1091/mbc.e14-11-1552Herranz, S., Rodriguez, J. M., Bussink, H.-J., Sanchez-Ferrero, J. C., Arst, H. N., Penalva, M. A., & Vincent, O. (2005). Arrestin-related proteins mediate pH signaling in fungi. Proceedings of the National Academy of Sciences, 102(34), 12141-12146. doi:10.1073/pnas.0504776102Hoya, M., Yanguas, F., Moro, S., Prescianotto-Baschong, C., Doncel, C., de León, N., … Valdivieso, M.-H. (2016). Traffic Through theTrans-Golgi Network and the Endosomal System Requires Collaboration Between Exomer and Clathrin Adaptors in Fission Yeast. Genetics, 205(2), 673-690. doi:10.1534/genetics.116.193458Huranova, M., Muruganandam, G., Weiss, M., & Spang, A. (2016). Dynamic assembly of the exomer secretory vesicle cargo adaptor subunits. EMBO reports, 17(2), 202-219. doi:10.15252/embr.201540795Kung, L. F., Pagant, S., Futai, E., D’Arcangelo, J. G., Buchanan, R., Dittmar, J. C., … Miller, E. A. (2011). Sec24p and Sec16p cooperate to regulate the GTP cycle of the COPII coat. The EMBO Journal, 31(4), 1014-1027. doi:10.1038/emboj.2011.444Lamb, T. M., & Mitchell, A. P. (2003). The Transcription Factor Rim101p Governs Ion Tolerance and Cell Differentiation by Direct Repression of the Regulatory Genes NRG1 and SMP1 in Saccharomyces cerevisiae. Molecular and Cellular Biology, 23(2), 677-686. doi:10.1128/mcb.23.2.677-686.2003Lamb, T. M., Xu, W., Diamond, A., & Mitchell, A. P. (2000). Alkaline Response Genes ofSaccharomyces cerevisiaeand Their Relationship to theRIM101Pathway. Journal of Biological Chemistry, 276(3), 1850-1856. doi:10.1074/jbc.m008381200Madrid, R., Gómez, M. J., Ramos, J., & Rodrı́guez-Navarro, A. (1998). Ectopic Potassium Uptake intrk1 trk2Mutants ofSaccharomyces cerevisiaeCorrelates with a Highly Hyperpolarized Membrane Potential. Journal of Biological Chemistry, 273(24), 14838-14844. doi:10.1074/jbc.273.24.14838Maresova, L., & Sychrova, H. (2004). Physiological characterization of Saccharomyces cerevisiae kha1 deletion mutants. Molecular Microbiology, 55(2), 588-600. doi:10.1111/j.1365-2958.2004.04410.xMarqués, M. C., Zamarbide-Forés, S., Pedelini, L., Llopis-Torregrosa, V., & Yenush, L. (2015). A functional Rim101 complex is required for proper accumulation of the Ena1 Na+-ATPase protein in response to salt stress in Saccharomyces cerevisiae. FEMS Yeast Research, 15(4). doi:10.1093/femsyr/fov017Mulet, J. M., Leube, M. P., Kron, S. J., Rios, G., Fink, G. R., & Serrano, R. (1999). A Novel Mechanism of Ion Homeostasis and Salt Tolerance in Yeast: the Hal4 and Hal5 Protein Kinases Modulate the Trk1-Trk2 Potassium Transporter. Molecular and Cellular Biology, 19(5), 3328-3337. doi:10.1128/mcb.19.5.3328Mulet, J. M., & Serrano, R. (2002). Simultaneous determination of potassium and rubidium content in yeast. Yeast, 19(15), 1295-1298. doi:10.1002/yea.909Murguía, J. R., Bellés, J. M., & Serrano, R. (1996). The YeastHAL2Nucleotidase Is anin VivoTarget of Salt Toxicity. Journal of Biological Chemistry, 271(46), 29029-29033. doi:10.1074/jbc.271.46.29029Obara, K., & Kihara, A. (2014). Signaling Events of the Rim101 Pathway Occur at the Plasma Membrane in a Ubiquitination-Dependent Manner. Molecular and Cellular Biology, 34(18), 3525-3534. doi:10.1128/mcb.00408-14Paczkowski, J. E., & Fromme, J. C. (2014). Structural Basis for Membrane Binding and Remodeling by the Exomer Secretory Vesicle Cargo Adaptor. Developmental Cell, 30(5), 610-624. doi:10.1016/j.devcel.2014.07.014Paczkowski, J. E., Richardson, B. C., & Fromme, J. C. (2015). Cargo adaptors: structures illuminate mechanisms regulating vesicle biogenesis. Trends in Cell Biology, 25(7), 408-416. doi:10.1016/j.tcb.2015.02.005Paczkowski, J. E., Richardson, B. C., Strassner, A. M., & Fromme, J. C. (2012). The exomer cargo adaptor structure reveals a novel GTPase-binding domain. The EMBO Journal, 31(21), 4191-4203. doi:10.1038/emboj.2012.268Parsons, A. B., Brost, R. L., Ding, H., Li, Z., Zhang, C., Sheikh, B., … Boone, C. (2003). Integration of chemical-genetic and genetic interaction data links bioactive compounds to cellular target pathways. Nature Biotechnology, 22(1), 62-69. doi:10.1038/nbt919Peñalva, M. A., Lucena-Agell, D., & Arst, H. N. (2014). Liaison alcaline: Pals entice non-endosomal ESCRTs to the plasma membrane for pH signaling. Current Opinion in Microbiology, 22, 49-59. doi:10.1016/j.mib.2014.09.005Ríos, G., Cabedo, M., Rull, B., Yenush, L., Serrano, R., & Mulet, J. M. (2013). Role of the yeast multidrug transporter Qdr2 in cation homeostasis and the oxidative stress response. FEMS Yeast Research, 13(1), 97-106. doi:10.1111/1567-1364.12013RIOS, G., FERRANDO, A., & SERRANO, R. (1997). Mechanisms of Salt Tolerance Conferred by Overexpression of theHAL1 Gene inSaccharomyces cerevisiae. Yeast, 13(6), 515-528. doi:10.1002/(sici)1097-0061(199705)13:63.0.co;2-xRitz, A. M., Trautwein, M., Grassinger, F., & Spang, A. (2014). The Prion-like Domain in the Exomer-Dependent Cargo Pin2 Serves as a trans-Golgi Retention Motif. Cell Reports, 7(1), 249-260. doi:10.1016/j.celrep.2014.02.026Rockenbauch, U., Ritz, A. M., Sacristan, C., Roncero, C., & Spang, A. (2012). The complex interactions of Chs5p, the ChAPs, and the cargo Chs3p. Molecular Biology of the Cell, 23(22), 4402-4415. doi:10.1091/mbc.e11-12-1015Roncero, C. (2002). The genetic complexity of chitin synthesis in fungi. Current Genetics, 41(6), 367-378. doi:10.1007/s00294-002-0318-7Rothfels, K., Tanny, J. C., Molnar, E., Friesen, H., Commisso, C., & Segall, J. (2005). Components of the ESCRT Pathway, DFG16, and YGR122w Are Required for Rim101 To Act as a Corepressor with Nrg1 at the Negative Regulatory Element of the DIT1 Gene of Saccharomyces cerevisiae. Molecular and Cellular Biology, 25(15), 6772-6788. doi:10.1128/mcb.25.15.6772-6788.2005Santos, B., & Snyder, M. (1997). Targeting of Chitin Synthase 3 to Polarized Growth Sites in Yeast Requires Chs5p and Myo2p. Journal of Cell Biology, 136(1), 95-110. doi:10.1083/jcb.136.1.95Sato, M., Dhut, S., & Toda, T. (2005). New drug-resistant cassettes for gene disruption and epitope tagging inSchizosaccharomyces pombe. Yeast, 22(7), 583-591. doi:10.1002/yea.1233Schekman, R., & Orci, L. (1996). Coat Proteins and Vesicle Budding. Science, 271(5255), 1526-1533. doi:10.1126/science.271.5255.1526Sopko, R., Huang, D., Preston, N., Chua, G., Papp, B., Kafadar, K., … Andrews, B. (2006). Mapping Pathways and Phenotypes by Systematic Gene Overexpression. Molecular Cell, 21(3), 319-330. doi:10.1016/j.molcel.2005.12.011Spang, A. (2008). Membrane traffic in the secretory pathway. Cellular and Molecular Life Sciences, 65(18), 2781-2789. doi:10.1007/s00018-008-8349-yStarr, T. L., Pagant, S., Wang, C.-W., & Schekman, R. (2012). Sorting Signals That Mediate Traffic of Chitin Synthase III between the TGN/Endosomes and to the Plasma Membrane in Yeast. PLoS ONE, 7(10), e46386. doi:10.1371/journal.pone.0046386Trautwein, M., Schindler, C., Gauss, R., Dengjel, J., Hartmann, E., & Spang, A. (2006). Arf1p, Chs5p and the ChAPs are required for export of specialized cargo from the Golgi. The EMBO Journal, 25(5), 943-954. doi:10.1038/sj.emboj.7601007Trilla, J. A., Durán, A., & Roncero, C. (1999). Chs7p, a New Protein Involved in the Control of Protein Export from the Endoplasmic Reticulum that Is Specifically Engaged in the Regulation of Chitin Synthesis in Saccharomyces cerevisiae. Journal of Cell Biology, 145(6), 1153-1163. doi:10.1083/jcb.145.6.1153Valdivia, R. H., Baggott, D., Chuang, J. S., & Schekman, R. W. (2002). The Yeast Clathrin Adaptor Protein Complex 1 Is Required for the Efficient Retention of a Subset of Late Golgi Membrane Proteins. Developmental Cell, 2(3), 283-294. doi:10.1016/s1534-5807(02)00127-2Wadskog, I., Forsmark, A., Rossi, G., Konopka, C., Öyen, M., Goksör, M., … Adler, L. (2006). The Yeast Tumor Suppressor Homologue Sro7p Is Required for Targeting of the Sodium Pumping ATPase to the Cell Surface. Molecular Biology of the Cell, 17(12), 4988-5003. doi:10.1091/mbc.e05-08-0798Wang, C.-W., Hamamoto, S., Orci, L., & Schekman, R. (2006). Exomer: a coat complex for transport of select membrane proteins from the trans-Golgi network to the plasma membrane in yeast. Journal of Cell Biology, 174(7), 973-983. doi:10.1083/jcb.200605106Weiskoff, A. M., & Fromme, J. C. (2014). Distinct N-terminal regions of the exomer secretory vesicle cargo Chs3 regulate its trafficking itinerary. Frontiers in Cell and Developmental Biology, 2. doi:10.3389/fcell.2014.00047Yahara, N., Ueda, T., Sato, K., & Nakano, A. (2001). Multiple Roles of Arf1 GTPase in the Yeast Exocytic and Endocytic Pathways. Molecular Biology of the Cell, 12(1), 221-238. doi:10.1091/mbc.12.1.221Yenush, L., Merchan, S., Holmes, J., & Serrano, R. (2005). pH-Responsive, Posttranslational Regulation of the Trk1 Potassium Transporter by the Type 1-Related Ppz1 Phosphatase. Molecular and Cellular Biology, 25(19), 8683-8692. doi:10.1128/mcb.25.19.8683-8692.2005Yenush, L. (2002). The Ppz protein phosphatases are key regulators of K+ and pH homeostasis: implications for salt tolerance, cell wall integrity and cell cycle progression. The EMBO Journal, 21(5), 920-929. doi:10.1093/emboj/21.5.920Zanolari, B., Rockenbauch, U., Trautwein, M., Clay, L., Barral, Y., & Spang, A. (2011). Transport to the plasma membrane is regulated differently early and late in the cell cycle in Saccharomyces cerevisiae. Journal of Cell Science, 124(7), 1055-1066. doi:10.1242/jcs.07237

    Large expert-curated database for benchmarking document similarity detection in biomedical literature search

    Get PDF
    Document recommendation systems for locating relevant literature have mostly relied on methods developed a decade ago. This is largely due to the lack of a large offline gold-standard benchmark of relevant documents that cover a variety of research fields such that newly developed literature search techniques can be compared, improved and translated into practice. To overcome this bottleneck, we have established the RElevant LIterature SearcH consortium consisting of more than 1500 scientists from 84 countries, who have collectively annotated the relevance of over 180 000 PubMed-listed articles with regard to their respective seed (input) article/s. The majority of annotations were contributed by highly experienced, original authors of the seed articles. The collected data cover 76% of all unique PubMed Medical Subject Headings descriptors. No systematic biases were observed across different experience levels, research fields or time spent on annotations. More importantly, annotations of the same document pairs contributed by different scientists were highly concordant. We further show that the three representative baseline methods used to generate recommended articles for evaluation (Okapi Best Matching 25, Term Frequency–Inverse Document Frequency and PubMed Related Articles) had similar overall performances. Additionally, we found that these methods each tend to produce distinct collections of recommended articles, suggesting that a hybrid method may be required to completely capture all relevant articles. The established database server located at https://relishdb.ict.griffith.edu.au is freely available for the downloading of annotation data and the blind testing of new methods. We expect that this benchmark will be useful for stimulating the development of new powerful techniques for title and title/abstract-based search engines for relevant articles in biomedical research
    corecore