31 research outputs found

    Characterization of Apoptosis-Related Oxidoreductases from Neurospora crassa

    Get PDF
    The genome from Neurospora crassa presented three open reading frames homologous to the genes coding for human AIF and AMID proteins, which are flavoproteins with oxidoreductase activities implicated in caspase-independent apoptosis. To investigate the role of these proteins, namely within the mitochondrial respiratory chain, we studied their cellular localization and characterized the respective null mutant strains. Efficiency of the respiratory chain was analyzed by oxygen consumption studies and supramolecular organization of the OXPHOS system was assessed through BN-PAGE analysis in the respective null mutant strains. The results demonstrate that, unlike in mammalian systems, disruption of AIF in Neurospora does not affect either complex I assembly or function. Furthermore, the mitochondrial respiratory chain complexes of the mutant strains display a similar supramolecular organization to that observed in the wild type strain. Further characterization revealed that N. crassa AIF appears localized to both the mitochondria and the cytoplasm, whereas AMID was found exclusively in the cytoplasm. AMID2 was detected in both mitochondria and cytoplasm of the amid mutant strain, but was barely discernible in wild type extracts, suggesting overlapping functions for the two proteins

    Hereditary breast cancer in Middle Eastern and North African (MENA) populations: identification of novel, recurrent and founder BRCA1 mutations in the Tunisian population

    Get PDF
    Germ-line mutations in BRCA1 breast cancer susceptibility gene account for a large proportion of hereditary breast cancer families and show considerable ethnic and geographical variations. The contribution of BRCA1 mutations to hereditary breast cancer has not yet been thoroughly investigated in Middle Eastern and North African populations. In this study, 16 Tunisian high-risk breast cancer families were screened for germline mutations in the entire BRCA1 coding region and exon–intron boundaries using direct sequencing. Six families were found to carry BRCA1 mutations with a prevalence of 37.5%. Four different deleterious mutations were detected. Three truncating mutations were previously described: c.798_799delTT (916 delTT), c.3331_3334delCAAG (3450 delCAAG), c.5266dupC (5382 insC) and one splice site mutation which seems to be specific to the Tunisian population: c.212 + 2insG (IVS5 + 2insG). We also identified 15 variants of unknown clinical significance. The c.798_799delTT mutation occurred at an 18% frequency and was shared by three apparently unrelated families. Analyzing five microsatellite markers in and flanking the BRCA1 locus showed a common haplotype associated with this mutation. This suggests that the c.798_799delTT mutation is a Tunisian founder mutation. Our findings indicate that the Tunisian population has a spectrum of prevalent BRCA1 mutations, some of which appear as recurrent and founding mutations

    A brain-specific isoform of mitochondrial apoptosis-inducing factor: AIF2

    Get PDF
    Apoptosis-inducing factor (AIF) has important supportive as well as potentially lethal roles in neurons. Under normal physiological conditions, AIF is a vital redox-active mitochondrial enzyme, whereas in pathological situations, it translocates from mitochondria to the nuclei of injured neurons and mediates apoptotic chromatin condensation and cell death. In this study, we reveal the existence of a brain-specific isoform of AIF, AIF2, whose expression increases as neuronal precursor cells differentiate. AIF2 arises from the utilization of the alternative exon 2b, yet uses the same remaining 15 exons as the ubiquitous AIF1 isoform. AIF1 and AIF2 are similarly imported to mitochondria in which they anchor to the inner membrane facing the intermembrane space. However, the mitochondrial inner membrane sorting signal encoded in the exon 2b of AIF2 is more hydrophobic than that of AIF1, indicating a stronger membrane anchorage of AIF2 than AIF1. AIF2 is more difficult to be desorbed from mitochondria than AIF1 on exposure to non-ionic detergents or basic pH. Furthermore, AIF2 dimerizes with AIF1, thereby preventing its release from mitochondria. Conversely, it is conceivable that a neuron-specific AIF isoform, AIF2, may have been 'designed' to be retained in mitochondria and to minimize its potential neurotoxic activity
    corecore