5,023 research outputs found
Structural changes in cartilage and collagen studied by high temperature Raman spectroscopy
Understanding the high temperature behavior of collagen and collagenous tissue is important for surgical procedures and biomaterials processing for the food, pharmaceutical, and cosmetics industries. One primary event for proteins is thermal denaturation that involves unfolding the polypeptide chains while maintaining the primary structure intact. Collagen in the extracellular matrix of cartilage and other connective tissue is a hierarchical material containing bundles of triple-helical fibers associated with water and proteoglycan components. Thermal analysis of dehydrated collagen indicates irreversible denaturation at high temperature between 135°C and 200°C, with another reversible event at ∼60-80°C for hydrated samples. We report high temperature Raman spectra for freeze-dried cartilage samples that show an increase in laser-excited fluorescence interpreted as conformational changes associated with denaturation above 140°C. Spectra for separated collagen and proteoglycan fractions extracted from cartilage indicate the changes are associated with collagen. The Raman data also show appearance of new features indicating peptide bond hydrolysis at high temperature implying that molecular H2O is retained within the freeze-dried tissue. This is confirmed by thermogravimetric analysis that show 5-7 wt% H2O remaining within freeze-dried cartilage that is released progressively upon heating up to 200°C. Spectra obtained after exposure to high temperature and re-hydration following recovery indicate that the capacity of the denatured collagen to re-absorb water is reduced. Our results are important for revealing the presence of bound H2O within the collagen component of connective tissue even after freeze-drying and its role in denaturation that is accompanied by or perhaps preceded by breakdown of the primary polypeptide structure
Rolling moments in a trailing vortex flow field
Pressure distributions are presented which were measured on a wing in close proximity to a tip vortex of known structure generated by a larger, upstream semispan wing. Overall loads calculated by integration of these pressures are checked by independent measurements made with an identical model mounted on a force balance. Several conventional methods of wing analysis are used to predict the loads on the following wing. Strip theory is shown to give uniformly poor results for loading distribution, although predictions of overall lift and rolling moment are sometimes acceptable. Good results are obtained for overall coefficients and loading distribution by using linearized pressures in vortex-lattice theory in conjunction with a rectilinear vortex. The equivalent relation from reverse-flow theory that can be used to give economic predictions for overall loads is presented
Optical monitoring of gamma-ray source fields
The three gamma-ray burst source fields GBS1028+46, GBS1205+24, and GBS2252-03 have been monitored for transient optical emission for a combined total of 52 hours. No optical events were seen. The limiting magnitude for the search was M sub V = 15.8 longer and M sub V = 17.0 for 6.0 s or longer
On the Use of Finite-Size Scaling to Measure Spin-Glass Exponents
Finite-size scaling (FSS) is a standard technique for measuring scaling
exponents in spin glasses. Here we present a critique of this approach,
emphasizing the need for all length scales to be large compared to microscopic
scales. In particular we show that the replacement, in FSS analyses, of the
correlation length by its asymptotic scaling form can lead to apparently good
scaling collapses with the wrong values of the scaling exponents.Comment: RevTeX, 5 page
Cancer and systemic inflammation: treat the tumour and treat the host
Determinants of cancer progression and survival are multifactorial and host responses are increasingly appreciated to have a major role. Indeed, the development and maintenance of a systemic inflammatory response has been consistently observed to confer poorer outcome, in both early and advanced stage disease. For patients, cancer-associated symptoms are of particular importance resulting in a marked impact on day-to-day quality of life and are also associated with poorer outcome. These symptoms are now recognised to cluster with one another with anorexia, weight loss and physical function forming a recognised cluster whereas fatigue, pain and depression forming another. Importantly, it has become apparent that these symptom clusters are associated with presence of a systemic inflammatory response in the patient with cancer. Given the understanding of the above, there is now a need to intervene to moderate systemic inflammatory responses, where present. In this context the rationale for therapeutic intervention using nonselective anti-inflammatory agents is clear and compelling and likely to become a part of routine clinical practice in the near future. The published literature on therapeutic intervention using anti-inflammatory agents for cancer-associated symptoms was reviewed. There are important parallels with the development of useful treatments for the systemic inflammatory response in patients with rheumatological disease and cardiovascular disease
Statistics of lowest excitations in two dimensional Gaussian spin glasses
A detailed investigation of lowest excitations in two-dimensional Gaussian
spin glasses is presented. We show the existence of a new zero-temperature
exponent lambda describing the relative number of finite-volume excitations
with respect to large-scale ones. This exponent yields the standard thermal
exponent of droplet theory theta through the relation, theta=d(lambda-1). Our
work provides a new way to measure the thermal exponent theta without any
assumption about the procedure to generate typical low-lying excitations. We
find clear evidence that theta < theta_{DW} where theta_{DW} is the thermal
exponent obtained in domain-wall theory showing that MacMillan excitations are
not typical.Comment: 4 pages, 3 figures, (v2) revised version, (v3) corrected typo
Phase diagram of silicon from atomistic simulations
In this letter we present a calculation of the temperature-pressure phase
diagram of Si in a range of pressures covering from -5 to 20 GPa and
temperatures up to the melting point. The phase boundaries and triple points
between the diamond, liquid, -Sn and clathrate phases are
reported. We have employed efficient simulation techniques to calculate free
energies and to numerically integrate the Clausius-Clapeyron equation, combined
with a tight binding model capable of an accuracy comparable to that of
first-principles methods. The resulting phase diagram agrees well with the
available experimental data.Comment: 5 pages, 1 figure, accepted in PR
First-principles molecular-dynamics simulations of a hydrous silica melt: Structural properties and hydrogen diffusion mechanism
We use {\it ab initio} molecular dynamics simulations to study a sample of
liquid silica containing 3.84 wt.% HO.We find that, for temperatures of
3000 K and 3500 K,water is almost exclusively dissolved as hydroxyl groups, the
silica network is partially broken and static and dynamical properties of the
silica network change considerably upon the addition of water.Water molecules
or free O-H groups occur only at the highest temperature but are not stable and
disintegrate rapidly.Structural properties of this system are compared to those
of pure silica and sodium tetrasilicate melts at equivalent temperatures. These
comparisons confirm the picture of a partially broken tetrahedral network in
the hydrous liquid and suggest that the structure of the matrix is as much
changed by the addition of water than it is by the addition of the same amount
(in mole %) of sodium oxide. On larger length scales, correlations are
qualitatively similar but seem to be more pronounced in the hydrous silica
liquid. Finally, we study the diffusion mechanisms of the hydrogen atoms in the
melt. It turns out that HOSi triclusters and SiO dangling bonds play a
decisive role as intermediate states for the hydrogen diffusion.Comment: 25 pages, 18 figures. submitte
- …