110 research outputs found

    Activity of the fungus Pleurotus ostreatus and of its proteases on Panagrellus sp. larvae

    Get PDF
    Biological control has been shown to be one of the possible biotechnological applications of fungi and their proteases. The objective of this study was to evaluate the nematicidal activity of the fungus Pleurotus ostreatus and its proteases on Panagrellus sp. larvae. Proteolytic activity of P. ostreatus (PLO 06) was measured and characterized at different pHs, temperatures and in the presence of a inhibitor (PMSF). Daily samples of culture medium were collected in order to determine the period of maximum enzyme production. A zymogram showed the profile of several proteases. Predatory activity of the fungus P. ostreatus (PLO 06) was evaluated on Panagrellus sp. larvae (assay A) as well as the nematicidal activity of PLO 06 proteases on the same larvae (assay B). At pH 9 and 60°C, the activity of the proteases reached the maximum. In the presence of inhibitor, there was no proteolytic activity. A sample collected on the fifth day of incubation showed the highest enzyme activity. P. ostreatus demonstrated capture activity on larvae Panagrellus sp. The values of the reduction of the larvae (Assay A) were: day 1 (65.6%); day 2 (77.4%); day 3 (95.2%). The reduction of the larvae (Assay B) was 42%. P. ostreatus (PLO 06) and its proteases were very effective against Panagrellus sp. larvae, demonstrating great potential for use in integrated biological control.Keywords: Pleurotus, protease, Panagrellus sp., biological control, nematicidal. Abbreviation: PMSF, Phenylmethylsulfonyl fluoride

    The Bacterium Endosymbiont of Crithidia deanei Undergoes Coordinated Division with the Host Cell Nucleus

    Get PDF
    In trypanosomatids, cell division involves morphological changes and requires coordinated replication and segregation of the nucleus, kinetoplast and flagellum. In endosymbiont-containing trypanosomatids, like Crithidia deanei, this process is more complex, as each daughter cell contains only a single symbiotic bacterium, indicating that the prokaryote must replicate synchronically with the host protozoan. In this study, we used light and electron microscopy combined with three-dimensional reconstruction approaches to observe the endosymbiont shape and division during C. deanei cell cycle. We found that the bacterium replicates before the basal body and kinetoplast segregations and that the nucleus is the last organelle to divide, before cytokinesis. In addition, the endosymbiont is usually found close to the host cell nucleus, presenting different shapes during the protozoan cell cycle. Considering that the endosymbiosis in trypanosomatids is a mutualistic relationship, which resembles organelle acquisition during evolution, these findings establish an excellent model for the understanding of mechanisms related with the establishment of organelles in eukaryotic cells

    The program for biodiversity research in Brazil: The role of regional networks for biodiversity knowledge, dissemination, and conservation

    Get PDF
    The Program for Biodiversity Research (PPBio) is an innovative program designed to integrate all biodiversity research stakeholders. Operating since 2004, it has installed long-term ecological research sites throughout Brazil and its logic has been applied in some other southern-hemisphere countries. The program supports all aspects of research necessary to understand biodiversity and the processes that affect it. There are presently 161 sampling sites (see some of them at Supplementary Appendix), most of which use a standardized methodology that allows comparisons across biomes and through time. To date, there are about 1200 publications associated with PPBio that cover topics ranging from natural history to genetics and species distributions. Most of the field data and metadata are available through PPBio web sites or DataONE. Metadata is available for researchers that intend to explore the different faces of Brazilian biodiversity spatio-temporal variation, as well as for managers intending to improve conservation strategies. The Program also fostered, directly and indirectly, local technical capacity building, and supported the training of hundreds of undergraduate and graduate students. The main challenge is maintaining the long-term funding necessary to understand biodiversity patterns and processes under pressure from global environmental changes

    Patterns of genetic diversity in southern and southeastern Araucaria angustifolia (Bert.) O. Kuntze relict populations

    Get PDF
    Habitat fragmentation and a decrease in population size may lead to a loss in population genetic diversity. For the first time, the reduction in genetic diversity in the northernmost limit of natural occurence (southeastern Brazil) of Araucaria angustifolia in comparison with populations in the main area of the species continuous natural distribution (southern Brazil), was tested. The 673 AFLPs markers revealed a high level of genetic diversity for the species (Ht = 0.27), despite anthropogenic influence throughout the last century, and a decrease of H in isolated populations of southeastern Brazil (H = 0.16), thereby indicating the tendency for higher genetic diversity in remnant populations of continuous forests in southern Brazil, when compared to natural isolated populations in the southeastern region. A strong differentiation among southern and southeastern populations was detected (AMOVA variance ranged from 10%-15%). From Bayesian analysis, it is suggested that the nine populations tested form five “genetic clusters” (K = 5). Five of these populations, located in the northernmost limit of distribution of the species, represent three “genetic clusters”. These results are in agreement with the pattern of geographic distribution of the studied populations
    corecore