9,145 research outputs found
GRAPE - A Balloon-Borne Gamma-Ray Polarimeter Experiment
This paper reviews the development status of GRAPE (the Gamma-Ray Polarimeter
Experiment), a hard X-ray Compton Polarimeter. The purpose of GRAPE is to
measure the polarization of hard X-rays in the 50-300 keV energy range. We are
particularly interested in X-rays that are emitted from solar flares and
gamma-ray bursts (GRBs), although GRAPE could also be employed in the study of
other astrophysical sources. Accurately measuring the polarization of the
emitted radiation will lead to a better understating of both emission
mechanisms and source geometries. The GRAPE design consists of an array of
plastic scintillators surrounding a central high-Z crystal scintillator. The
azimuthal distribution of photon scatters from the plastic array into the
central calorimeter provides a measure of the polarization fraction and
polarization angle of the incident radiation. The design of the detector
provides sensitivity over a large field-of-view (>pi steradian). The design
facilitates the fabrication of large area arrays with minimal deadspace. This
paper presents the latest design concept and the most recent results from
laboratory tests of a GRAPE science model.Comment: 6 pages; paper presented at the FRASCATI Workshop 2005 on
Multifrequency Behaviour of High Energy Cosmic Sources; submitted to Chinese
Journal of Astronomy and Astrophysic
Radial Trends in IMF-Sensitive Absorption Features in Two Early-Type Galaxies: Evidence for Abundance-Driven Gradients
Samples of early-type galaxies show a correlation between stellar velocity
dispersion and the stellar initial mass function (IMF) as inferred from
gravity-sensitive absorption lines in the galaxies' central regions. To search
for spatial variations in the IMF, we have observed two early-type galaxies
with Keck/LRIS and measured radial gradients in the strengths of absorption
features from 4000-5500 \AA and 8000-10,000 \AA. We present spatially
resolved measurements of the dwarf-sensitive spectral indices NaI (8190 \AA)
and Wing-Ford FeH (9915 \AA), as well as indices for species of H, C, CN,
Mg, Ca, TiO, and Fe. Our measurements show a metallicity gradient in both
objects, and Mg/Fe consistent with a shallow gradient in \alpha-enhancement,
matching widely observed trends for massive early-type galaxies. The NaI index
and the CN index at 4160 \AA exhibit significantly steeper gradients,
with a break at ( pc). Inside this radius
NaI strength increases sharply toward the galaxy center, consistent with a
rapid central rise in [Na/Fe]. In contrast, the ratio of FeH to Fe index
strength decreases toward the galaxy center. This behavior cannot be reproduced
by a steepening IMF inside if the IMF is a single power law.
While gradients in the mass function above may occur,
exceptional care is required to disentangle these IMF variations from the
extreme variations in individual element abundances near the galaxies' centers.Comment: Accepted for publication in ApJ. Updates from v1 include an expanded
comparison of measured index strengths to SPS models. 20 page body + 7 page
appendix + references. Includes 25 figure
Design features and results from fatigue reliability research machines
Design and performance tests for reversed bending with steady torque fatigue test machine using notched steel specimen
Hard x-ray polarimeter for gamma-ray bursts and solar flares
We report on the development of a dedicated polarimeter design that is capable of studying the linear polarization of hard X-rays (50-300 keV) from gamma-ray bursts and solar flares. This compact design, based on the use of a large area position-sensitive PMT (PSPMT), is referred to as GRAPE (Gamma-RAy Polarimeter Experiment). The PSPMT is used to determine the Compton interaction location within an array of small plastic scintillator elements. Some of the photons that scatter within the plastic scintillator array are subsequently absorbed by a small centrally-located array of CsI(Tl) crystals that is read out by an independent multi-anode PMT. One feature of GRAPE that is especially attractive for studies of gamma-ray bursts is the significant off-axis response (at angles \u3e 60 degrees). The modular nature of this design lends itself toward its accomodation on a balloon or spacecraft platform. For an array of GRAPE modules, sensitivity levels below a few percent can be achieved for both gamma-ray bursts and solar flares. Here we report on the latest results from the testing of a laboratory science model
Development of the NASA VALT digital navigation system
The research to develop and fabricate a terminal area navigation system for use in the NASA VTOL Approach and Landing Technology (VALT) program. The results of that effort are reported. The navigation system developed and fabricated was based on a general purpose airborne digital computer. A set of flight hardware units was fabricated to create the necessary analog, digital and human interface with the computer. A comprehensive package of software was created to implement the control and guidance laws required for automatic and flight director approaches that are curved in two planes. A technique was developed that enables the generation of randomly shaped lateral paths from simple input data. The lateral path concept combines straight line and elliptical-curved segments to fit a continuous curved path to the data points. A simple, fixed base simulation was put together to assist in developing and evaluating the system. The simulation was used to obtain system performance data during simulated curved-path approaches
Dedicated polarimeter design for hard x-ray and soft gamma-ray astronomy
We have developed a modular design for a hard X-ray and soft gamma-ray polrimeter that we call GRAPE (Gamma RAy Polarimeter Experiment). Optimized for the energy range of 50-300 keV, the GRAPE design is a Compton polarimeter based on the use of an array of plastic scintillator scattering elements in conjunction with a centrally positioned high-Z calorimeter detector. Here we shall review the results from a laboratory model of the baseline GRAPE design. The baseline design uses a 5-inch diameter position sensitive PMT (PSPMT) for readout of the plastic scintillator array and a small array of CsI detectors for measurement of the scattered photon. An improved design, based on the use of large area multi-anode PMTs (MAPMTs), is also discussed along with plans for laboratory testing of a prototype. An array of GRAPE modules could be used as the basis for a dedicated science mission, either on a long duration balloon or on an orbital mission. With a large effective FoV, a non-imaging GRAPE mission would be ideal for studying polarization in transient sources (gamma ray bursts and solar flares). It may also prove useful for studying periodically varying sources, such as pulsars. An imaging system would improve the sensitivity of the polarization measurements for transient and periodic sources and may also permit the measurement of polarization in steady-state sources
The Development of GRAPE, a Gamma Ray Polarimeter Experiment
The measurement of hard X‐ray polarization in γ‐ray bursts (GRBs) would add yet another piece of information in our effort to resolve the true nature of these enigmatic objects. Here we report on the development of a dedicated polarimeter design with a relatively large FoV that is capable of studying hard X‐ray polarization (50–300 keV) from GRBs. This compact design, based on the use of a large area position‐sensitive PMT (PSPMT), is referred to as GRAPE (Gamma‐RAy Polarimeter Experiment). The feature of GRAPE that is especially attractive for studies of GRBs is the significant off‐axis polarization response (at angles greater than 60°). For an array of GRAPE modules, current sensitivity estimates give minimum detectable polarization (MDP) levels of a few percent for the brightest GRBs
- …