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DEVELOPMENT OF THE NASA VALT
DIGITAL NAVIGATION SYSTEM

by

Walter J. McConnell Jr.
Edmund R. Skutecki
Alfonso J. Calzado

SUMMARY

Sperry Flight Systems was awarded Contract NAS1-12365 in June of 1973 by
the NASA Langley Research Center. The purpose of this contract was to develop
and fabricate a terminal area navigation system for use in the NASA VTIOL
Approach and Landing Technology (VALT) program. This report presents the
results of that effort through contract modification number seven.

The navigation system developed and fabricated was based on a general pur-
pose airborne digital computer. A set of flight hardware units was fabricated
to create the necessary analog, digital and human interface with the computer.
A comprehensive package of software was created to implement the control and
guidance laws required for automatic and flight director approaches that are
curved in two planes.

A technique was developed that enables the generation of randomly shaped
lateral paths from simple input data. The lateral path concept combines
straight line and elliptical-curved segments to fit a continuous curved path to’
the data points.

A simple, fixed base simulation was put together to assist in developing
and evaluating the system. The simulation was used to obtain system perfor-
mance ,data during simulated curved-path approaches.



INTRODUCTION

On 6 June 1973, NASA/LaRC, Hampton, Virginia awarded Contract NAS1-12365 to
Sperry Flight Systems for the design and fabrication of a Digital Navigation
System to be used in conjunction with a modified CH-47B helicopter. Subsequent
modifications to the contract were issued in October 1973, March 1974, and
December 1974 to expand the capabilities of the system through additional hard-
ware and software. The work performed under this contract is a part of the
ARMY /NASA VTOL Approach and Landing Technology (VALT) program designed to
determine the operating envelope and piloting procedures for VIOL aircraft in
the terminal area. -

This report describes the design, fabrication, and initial performance
evaluation of a digital navigation system. The principal output from this
project was a set of flight system hardware, a set of ground support hardware
and a digital computer software package that together were used to implement
the desired control laws and navigation equations.

The objective of this project was to produce a digital navigation system
that could be used to generate and track arbitrary curved path approaches,
altitude profiles, and speed profiles. The system was to be a flexible re-
search tool suitable for the evaluation of various control, display, and guid-
" ance concepts related to VIOL Approach and Landing problems. The system was to
be configured such that complex approaches could be made in either a fully
automatic mode or by a pilot through the use of various cockpit displays. The
project was divided into the following two main tasks:

Task 1 - Systems Analysis and Definition

An installation survey was made to determine the detailed electrical and
mechanical interface with the CH-47B helicopter. NASA/LaRC defined a baseline
system built around a TR-48 analog computer, a set of aircraft sensors, a modi-
fied GSN-5 radar, and a digital telemetry link. These items of equipment were
to be combined with a general purpose digital computer and the necessary inter-
face units to form the integrated system. " The digital computer was to perform
all computations except for the inner loop rate damping in the pitch, roll and
yaw axes. NASA LaRC provided a model of the characteristics of the CH-47B with
the NASA inner loops closed. This model was used in a simulation to determine
the control laws necessary to obtain acceptable tracking of the lateral curved
paths. A technique was developed using elliptical and straight line path seg-
ments to approximate an arbitrary lateral curved path with a minimum number of
data points. - A format for the entry of path data was developed together with a
limited number of restrictions on the use of the curved path technique. De-
tailed performance requirements for the flight system interface hardware were
developed and used as a basis for the design of the flight system hardware.

A set of Ground Support Equipment hardware was designed and fabricated in order
to facilitate the generation of the system software. '



Task 2 - Fabricate Hardware, Generate Software
and Measure System Performance °

A set of flight hardware was fabricated and tested. Software to implement
the desired control law and navigation equations was written. The software and
hardware were integrated and interfaced with the simulation to verify the de-
sign in a dynamic situation. Data runs were taken to document the closed loop
system performance and navigational capabilities. A programmers manual was
developed to document the software in detail and to serve as a -basis for future
system software modifications. The flight system and ground support system
components were delivered to NASA/LaRC for installation and system checkout.

A training course was developed and presented to NASA personnel as an aid to
building an 1819A programming capability at LaRC.

As part of one of the contract modifications, additional software was
~ generated to provide digital inmer loop stabilization and control, in addition
to the analog capability.



SYMBOLS

Values are given in both SI and U.S. Customary Units.

a.
y

41

X1

lateral accelerometer output, m/sec2 (ft/secz)

vertical accelerometer output, compensated for gravity, m/sec_2
(ft/secz)

longitudinal accelerometer output, compensated for gravity,
m/sec2 (ft/secz)

body axis roll rate, deg/sec

body axis pitch rate, deg/sec

‘body axis yaw rate, deg/sec

positional error parallel to aircraft longitudinal axis, m (ft)

positional error parallel to aircraft lateral axis, m (ft)

airspeed, m/sec (ft/sec)

groundspeed, m/Sec (ft/sec)

aircraft position, Qest, north, up, m (ft)
barometric altitude, m (ft)

pitch attitude, positive nose up, deg

roll attitude, positive right wing down, deg
magnetic heading, deg

pitch actuator position, percent of full travel from.center

roll actuator position, percent of full travel from center
collective actuator position, percent of full travel from center
yaw actuator position, percent of full travel from center

crosstrack error, m (ft)



Subscripts
c

e

SYMBOLS (cont)

commanded parameters

error

model output

pilot originated

reference parameter

tangential to reference angle

derived by hover augmentation éystem computation

change in longitudinal body axis velocity, pos1tive forward,
m/sec (ft/sec)

change in lateral body axis velocity, positive right; m/sec
(ft/sec)

change in vertical body axis velocity, positive down, m/sec
(ft/sec)



SYSTEM DESCRIPTION

The VALT Digital Navigation System is an integrated hardware and software -
package designed to provide a tool for investigating the problems associated
with the terminal area operations of VIOL aircraft. The system has been con-
figured for integration into a NASA CH-47B research aircraft and as such is de-
signed to interface with the sensors, control system, and data link that will
be installed in that aircraft. The hardware and software created for this sys-
tem are designed to provide a tradeoff in favor of flexibility and cost as
opposed to minimum size, weight, power, or memory requirements.

System Components

As presently configured, the total NASA VALT Research System is a hybrid
combination of analog and digital components. The analog elements of the sys-
tem include the sensors, the actuation system, and the inner loop stabiliza-
tion and control portion of the control system. The digital elements of the
system include the digital navigation system and the air/ground telemetry data
system. Software has been generated to permit digital computation of the inner
loop control laws. The initial flight tests will be accomplished using the
hybrid digital-analog system. A block diagram of the VALT research system is
shown in Figure 1. This report pertains to the VALT Digital Nav1gat10n System
and the associated Ground Support Equipment (GSE) only.

Hardware.—- The navigation system hardware consists of a general purpose
digital computer, a pair of control and display units, an analog-to-digital and
digital-to~analog conversion unit, a telemetry data system interface unit, a
flight hardware mounting pallet and electrical junction box, and the necessary
‘interconnecting cables and wiring.

Digital Computer: The primary hardware component in the Digital Navigation
System is the Sperry Flight Systems 1819A Digital Computer. This general pur-
pose computer is designed for airborne applications. The computer configura-
tion used for the Digital Navigation System consists of 16,384 words of 18-bit,
magnetic core memory, 1024 words of 18-bit, solid-state, read only memory,
seven input/output channels, and a built-in test routine. This computer per-
forms all of the computations, data formatting, and logic decision making for
the navigation system. In addition, the computer controls and directs the flow
of digital data to and from the remaining hardware elements of the system.

Analog Interface: The interface between the 1819A navigation computer and
the analog sensors, displays and actuation components is provided by the Digi-
tal Interface Unit (DIU). The DIU is configured to provide 30 channels of
analog-to-digital conversion and 30 channels of digital-to-analog conversion.
In addition, the DIU provides the capability to input 12 discretes into the
computer and to accept 12 discretes from the computer. The DIU will convert
analog signals within the range from -10 volt dc to +10 volt dc into 12-bit
digital words. Conversely, the DIU will convert 12-bit digital words into
signals within the range from -10 volt dc to +10 volt de.



Control and Display: The man/machine interface function within the naviga-
tion system is provided by two Navigation Guidance Control Panels (Nav/
Guidance). The two panels are identical in both appearance and operation and
allow simultaneous interrogation of the computer by either the cockpit person-
nel or the flight test engineer. The primary functions of the Nav/guidance -
panel are mode selection and indication, parameter insertion, and in-flight
programming of the digital computer.

Data Link: The primary navigational position information for the VALT
Digital Navigation System is generated by a ground radar system and is trans-
mitted to the aircraft via a data link. The interface between the Transponder
Data System (TDS) and the 1819A computer is provided by the Transponder Data
System Interface Unit (TIU). The TIU provides the level shifting, logic
sequencing, and memory buffering required to accept uplink data from the TDS
and transmit it to the computer. It also accepts data from the computer and
transmits it to the TDS for further transmission to the ground via the down-
link. Uplink data consists of up to 16 proportional data words of 10 bits
each, and up to 64 single-bit, discrete signals. Downlink data consists of up
to 48 proportional data words of 10 bits each and up to 64 single-bit, discrete
signals.

. Support Equipment: A set of Ground Support Equipment (GSE) provides the
means to modify existing software or to generate new software for the digital
computer. The GSE consists of a set of peripheral devices, a control electron-
ics unit, power supplies, and the necessary interconnecting wiring and cables. -
The GSE provides the capability for interactive communication between the pro-
- grammer and the computer as well as the capability to read in or punch out
paper tapes. A portable item of ground support equipment was also fabricated
to enable the computer memory to be updated when the aircraft is away from the
GSE. This unit, the Carry-On Load/Dump (COLD) box, provides the capability to
load the computer memory from a magnetic tape cassette and to output the con-
tents of the computer memory onto a magnetic tape cassette.

Software.— Because of the flexible nature of the hardware configuration,
the particular characteristics of the navigation system are primarily deter-
mined by the software that is input to the computer. The software developed
for this particular project is comprised of two major parts: Ground Support
Utility Software and Flight System Software.

Ground Support Software: The ground support utility package consists of-
five major programs and is the primary tool for the system programmer. This
software package, when used in conjunction with the ground support equipment,
provides the programmer with the capability to write, debug, edit, and assemble
programs for the 1819A computer.

Flight Software: The flight software consists of a group of special pur-
pose subroutine modules, each of which performs a specific computational or
logic task. Control of the subroutines is maintained by a master logic exec-
.-utive routine that decides which subroutines should be used. This decision is
based on data that is entered into the system through either of the Nav/
guidance control panels.



Modes and Indicators.- The two Nav/guidance control panels provide the
primary means to control the Digital Navigation System during flight. In the
normal system configuration, Nav/guidance panels will be located in the air-
craft cockpit and at the engineer's station in the aircraft cabin. These two
panels are identical and provide both stations with the capability to :
(1) select and monitor system modes of operation, (2) alter and verify system
parameters stored in the digital computer, and (3) inspect, change, and verify
computer programs stored in the digital computer. The panel controls are shown
in Figure 2.

Operational Modes: The Digital Navigation System modes of operation are
divided into three major categories: Hold Modes, Approach Modes, and Conveni-
ence Modes, ' The Hold Modes are Heading Hold/Heading Select, Altitude Hold/
Altitude Select, and Speed Hold/Speed Select. The Approach Modes are Manual
Approach, Automatic Approach, Go-Around, and Land. The Convenience Modes are
the On~Line and Test Modes.

Heading Hold/Heading Select - This mode provides automatic magnetic
heading hold through either the roll axis or the yaw axis. The switch from yaw
axis control at hover or low airspeed to roll axis control at higher airspeeds
is a software  function based on airspeed. The current magnetic heading is used
for the heading reference whenever this mode is engaged. Once the mode is en-
gaged, however, the desired reference heading can be changed (Heading Select)
by means of the keyboard on the Nav/guidance control panel. A transition from
one heading reference to another is indicated by a blinking heading-hold
indicator. '

Altitude Hold/Altitude Select - When this mode is selected, the system
will generate collective axis commands to hold automatically the current baro-
metric altitude. Whenever this mode is engaged, the reference altitude can be
changed by means of the keyboard on either of the Nav/guidance panels. Trans-
itions from one reference to another are indicated by a blinking altitude-hold
indicator.

Speed Hold/Speed Select - This mode provides automatic airspeed hold
through the pitch axis. The current airspeed is used as the reference when the
mode is first engaged; however, the reference airspeed can be changed by means
of the keyboard on the Nav/guidance panel. As in the case of the other hold
modes, transitions between speed references are indicated by a blinking mode
indicator.

Manual Approach - This mode provides pitch, roll, and collective com-~
mands to the flight director command bars, in order to provide guidance infor-
mation to the pilot relative to the selected deceleration profile, lateral
path, or altitude profile. This mode is inhibited whenever ground position in-
formation is not being received via the data link. When the manual approach
mode is engaged, the heading hold, altitude hold or speed hold mode buttons can
be used to provide a split axis control configuration. Under these conditions,
engaging the heading hold mode, for example, will result in automatic tracking
of the ground track profile without automatic tracking of the velocity or alti-
tude profiles. Any of the various combinations of automatic and manual split




axis control of the pitch, roll and collective axes are allowed; however, auto-
matic control of the yaw axis is provided regardless of which combination of
automatic or manual operation is selected for the other three axes. !

Automatic_Approach - This mode generates the pitch, roll, yaw, and col-
lective commands necessary to provide automatic tracking of the selected decel-
eration profile, lateral path, or altitude profile. Like the manual approach,
this mode is inhibited whenever ground position information is not being re-
ceived via the data link. The automatic approach mode provides output signals
to the flight director command bars to enable the pilot to monitor system
performance.

Go-Around - This mode was implemented to allow the pilot to quickly
select and automatically capture a preset heading, altitude and airspeed
reference.

Land - The land mode initiates a vertical descent and a landing seq-
uence in conjunction with either the manual approach or automatic approach
modes. This mode is inhibited if one of the approach modes has not been
selected. The land mode is enabled only when certain programmable restrictions
on aircraft position and velocity have been satisfied. This enabled condition
is indicated by blinking land-mode indicator on the Nav/guidance control
panels.

" On-Line - This mode is provided primarily as a convenience to the
flight test engineer in order to minimize computer faults during airborme pro-
- gramming operations. With the on-line mode disengaged, the computer is execut-
ing a minimal program that performs initialization and filtering computations
only. This short cycle routine allows the flight test engineer to make data or
instruction changes to the software stored in the computer, without the need to
plan the changes, in such a way as to avoid faulting the computer. The on-line
mode must be engaged before any hold or approach mode can be engaged.

Test - The test mode is used to generate up to 30 analog output volt-
ages from the computer memory and to read in up to 30 analog input voltages
into the computer memory. These voltages can be interfaced with the analog
inner loop to create a static or dynamic test of the navigation system. The
test mode is inhibited by any other mode selection and, in turn, inhibits the
selection of any other mode.

Displays and Indicators: The displays and indicators on the Nav/guidance
control panels are the primary source of navigation system data for the pilot
and the flight test engineer.

Mode Indication - System mode status is displayed by illuminated leg-
ends built into the mode select pushbuttons.

Data Displays - Two numerical readouts are provided for the presenta-
tion of digital data. The current data readout displays the current value of
the parameter selected by the Nav/guidance panel rotary switch position. The
keyboard readout displays the data to be entered into the computer from the
keyboard. :
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~ Parameter ‘Selection and Alteration: The first ten positions of the nav/
~guidance panel rotary selector switch enable the panel user to monitor the
following parameters:

Lateral track profile to be used.
Altitude profile to be used.

Deceleration profile to be used. Up to five lateral, five
altitude and five deceleration profiles may be stored in the
computer. Selection of a different profile is accomplished by
changing the appropriate profile number with the keyboard.
Selection of a baseline configuration for all three profiles
may be obtained by using the baseline mode switch.

Vertical Velocity Control System (VVCS) configuration to be
used. Up to five VVCS configurations may be stored in the
computer. The keyboard is used to enter the desired config-

. uration number. The variable VVCS configuration feature is

enabled only in conjunction with one of the approach modes.
Path distance to go, in feet, along the approach path.

Slant range, in feet, from the present aircraft position to
the origin of the approach coordinate system.

Altitude, in feet. The altitude that is displayed is either
barometric or radar-derived, depending on the particular VVCS
configuration in use.

Speed reference, in knots, for use with the speed hold mode.
This reference clamps when the speed hold mode is engaged and
can then be changed through the keyboard. When either of the
approach modes is engaged, this display presents the desired

~ground speed reference as determined by the velocity profile.

Altitude reference, in feet, for use with the altitude hold
mode. This reference clamps when the altitude hold mode is
engaged and can then be changed through the keyboard. When an
approach mode is engaged, this display presents the desired
radar-derived altitude reference.

Heading reference, in degrees, for use with the heading hold
mode. This reference clamps when the heading hold mode is
engaged and can then be changed through the keyboard. With
either approach mode engaged, this display presents the com-
puted tangential heading along the approach path.



In-Flight Computer Programming.- The last two rotary switch positions on
the nav/guidance panels enable the user to inspect and change the contents of
the digital computer memory. Input and output data can be in either decimal or
octal format as indicated by the rotary switch position. The software that is
required to implement this programming capability is located in the protected
memory section of the computer and, therefore, cannot be destroyed or altered
due to an operator error.

Inspection of the Computer Memory: When the selector is rotated to either
the decimal or octal position, the left hand display will show all zeros and
the right hand display will be blank. The desired memory address is then
entered into the left hand display with the keyboard switches. Momentarily"
depressing the ENT button will cause the contents of the selected memory loca-
tion to be presented in the right hand display. The selected memory address
can be incremented or decremented by momentarily depressing the '+'" switch or
the "-" switch respectively. The contents of thé new memory location will be
presented in the right hand display in the correct format. Selection of a dif-
ferent memory address by use of one of the other keyboard switches will cause
the right hand display to be blanked out again until the ENT button is momen-
tarily depressed.

Changing the Computer Memory: "The contents of a computer memory location
can be changed by first inspecting the desired location and then momentarily
depressing the Memory Access Switch (MEM). This will cause the memory access
switch indicator light to be lighted, indicating that the contents of the
selected location may be changed. In additiom, the right hand display will be
activated and will show all zeros. The new contents are then entered via the
keyboard. These contents will appear right justified in the right hand dis-
play. Momentarily depressing the ENT button will cause the current data to be
entered into the selected memory location. At this time, the right hand dis-
play will blank out for approximately 1 second and then return. In addition,
the memory access indicator light will go out, indicating the return to the
normal memory inspection mode. Momentarily depressing the memory access switch
when the indicator light is on will cause the control panel to revert to the
inspection mode without altering the selected memory location contents. The
"-'" switch is used to enter negative numbers into memory when the decimal
format display has been selected. The '"+" switch does not need to be utilized
since data will be entered as positive numbers unless the "-" switch has been
depressed. :

Fault Recovery: The ability to recover in flight, from a computer fault
due to an invalid instruction, is built into the system. When such a fault is
detected by the computer, the operating program is interrupted and a fault
recovery subroutine is executed. This subroutine is located in the protected
portion of the computer memory. The fault recovery routine will cause the mes-
sage FFFFFF to appear in the current data display. Rotating the nav/guidance
rotary switch to the octal position and then momentarily depressing the ENT
button will cause the address where the fault occurred to appear in the key-
board data display. The contents of the fault location will be displayed in
the current data display. Changing the contents of the fault location to a

valid instruction will clear the fault and restart the operating program.

11
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CONTROL LAWS

The VALT research vehicle is a CH 47B helicopter which has undergone exten-
sive electrical and mechanical modifications. - The mechanical linkages between
the right-hand set of pilot controls and the basic aircraft have been replaced
by full authority, electrohydraulic actuators in the pitch, roll, yaw, and .col-
lective axes. These actuators are drivén by the inner loop control system
which provides the aircraft with high-gain stability augmentation. In additionm,
the inner loop accepts reference commands generated by the outer loop control
system in response to automatic navigation commands.

Inner Loop Control Laws

The pitch and roll inner loops are configured identically and are shown in
Figure 3. This implementation yields a second-order attitude response to outer
loop commands, and pilot inputs. The VALT Digital Navigation System is cur-
rently configured such that the pitch and roll inner loop control laws may be
implemented in either digital or analog fashion. In the digital inner loop
configuration, the 1819A computes both outer and inner loop control laws and
produces actuator-position commands which are fed to an analog servo loop via
the Digital Interface Unit (DIU). In the analog inner loop configuration, only
the outer loop control laws are computed by the 1819A.

The yaw axis inner loop yields a first-order response to yaw rate commands.
The implementation may be either digital or analog. A block diagram of the
digital version, which is similar to the analog version in the AUTO mode, is
shown in Figure 4.

The collective axis inner loop, the Vertical Velocity Control System
(VVCS), shown in Figure 5, has a first-order response to altitude-rate com~-
‘mands. The VVCS is currently implemented in a digital configuration only.

Outer Loop Control Laws

Roll Axis.— The roll axis outer loop control laws produce an attitude com-~
mand which in turn is fed to the roll inner loop. A block diagram of the roll
axis controller is shown in Figure 6.

The most basic roll outer loop is Heading Hold/Select, which is implemented
through roll at speeds above 35 knots.

Current heading is summed against a heading reference and scaled by a gain
constant equal to the desired gain at 60 knots. The result is then gain pro-
grammed with velocity to produce a roll-angle command. One percent integral
control is employed to compensate for any nulls in the system. The integrator
is clamped whenever the heading error magnitude exceeds 10 degrees in order to
prevent large overshoots when a new heading is selected.

During a high speed approach, crosstrack error is controlled through the
roll axis alone. Error rate generates a bank—angle command which in turn

causes the aircraft to yaw (yaw axis is in turn coordination mode) thereby
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producing a ground .speed vector in a direction opposite to the crosstrack rate.
Crosstrack error is scaled and fed into the velocity loop as a crosstrack rate
reference. The rate command is limited in such a way as to provide a maximum
capture angle of 30 degrees.

During the low-speed portion of an approach the control technique used is
similar to the high-speed implementation with the exception that velocity is
commanded by direct lateral translation (yaw axis is independent of roll). 1In
addition, that portion of ground speed which is directly controllable by lat~
eral translation is fed into the velocity loop. This provides the control
necessary to follow a prescribed ground track while performing independent yaw
maneuvers. The rate and position gains are the same in the high and low speed
modes, but have been. implemented separately in order to provide the capability
to investlgate the two modes independently. In addition, integral control is
employed to compensate for the aircraft's lateral drag.

Pitch Axis.— Pitch axis outerloop control is implemented in three basic
modes: Airspeed Hold/Select, High-Speed Approach, and Low-Speed Approach. A
block diagram of pitch axis controller is shown in Figure 7. In the airspeed
hold/select mode, airspeed is summed against a reference and gain scaled to
produce a pitch-attitude command. This command is limited to a *5-degree
change from trim. A trim reference is provided by an integrator which is
initialized at the moment of engagement and which is also used to provide inte-
- gral control. The integral control gain was selected to compensate for air-
craft longitudinal drag in the 70 to 90 knot regionm.

During a high speed approach, ground speed is controlled by pitch-attitude
commands only. The groundspeed reference generated by the velocity profile
calculation is summed against groundspeed and gain scaled to provide a pitch-
attitude command above trim. The command is limited and integral control is
employed as in the airspeed hold case. In addition, a pitch-attitude lead term
provides the pitch-attitude command necessary to hold the deceleratlon command—
ed by a changing velocity reference.

The technique employed during low speed approach is similar to the high
speed case except only that portion of the groundspeed reference which is
directly controllable by pitch is used for a reference. In addition, only the
- groundspeed along the aircraft longitudinal axis is used as the feedback term
rather than total groundspeed. Furthermore, that portion of crosstrack error
parallel to the aircraft longitudinal axis is gain scaled and used to augment
the velocity control loop. An implementation of this nature provides a matural
transition to hover control, and also provides the control necessary to follow
prescribed groundtrack in the presence of independent yaw maneuvers.

Yaw Axis.- The yaw axis outer loop operates in two modes; heading hold. and
turn coordination. A block diagram is shown in Figure 8. In the turn coordi-
nation mode the automatic bank-angle command is gain scaled with either air-
speed or groundspeed and a yaw-rate command is generated which, in the
steady-state, balances the equation

@=Ur

Additional feedback is provided by lateral accelerationm.

14



In the heading hold mode, heading error is gain scaled to provide a yaw
rate command. A yaw rate lead term is employed during low speed approaches to
augment the system during curved path maneuvers.

Collective Axis.- Altitude select and altitude path control is provided by
the collective outer loop controller shown in Figure 9.  The VVCS inner loop
controller holds the aircraft at an altitude equal to its model reference, Zm.

In the altitude select mode, Zm is subtracted from the selected altitude, and

the result is gain scaled to provide a commanded altitude rate. This command
feeds the input to the VVCS model integrator (an. In the approach mode, a

Z lead term is added to control the aircraft along various glideslope segments.
Hover Augmentation System

The Hover Augmentation System (HAS) is a selectable outer loop mode which
provides the aircraft with short-term acceleration and velocity damping. The
routine also shapes stick inputs in such a way as to provide the pilot with a
. velocity command system. The pitch and roll HAS implementations are identical
and only the pitch axis will be considered here.

Figure 10 is a block diagram of the pitch axis HAS. Gravity compensated
acceleration is processed through a pseudo integrator- producing a short term

. velocity signal, Uh' The term is then fed back through another integrator pro-

ducing long term washout on both the acceleration and velocity signals. The
derived velocity and acceleration signals are gain scaled and fed to the inner
loop as Bc' Washed-out stick position is summed against the original acceler-

‘ation signal while lagged stick is summed against the total feedback signal. A
configuration of this type provides a short-term velocity response and a long-
term attitude response.

When HAS is engaged, the inner loop uses a special set of damping and fre-

quency parameters which allow a higher gain HAS configuration ( = .9,
w=2.5).
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PATH GEOMETRY

The selection of the geometry to be used for generation of the lateral
curved path, involved a tradeoff between versatility and reasonable programming
requirements. Ideally, the ability to synthesize any arbitrary path in the
horizontal and vertical planes, with no reprogramming, is desired. However,
this flexibility is limited by certain practical constraints. The path
~ geometry must be expressible in a mathematical form suitable for numeric com-

putation techniques. Also, aircraft position, with respect to the desired
position on the path, must be definable such that error signals can be gener-
ated. In addition, the engineering work load in generating the input param-
eters for the computer to specify paths and path variations must be reasonable.

The horizontal (X ~ Y) plane path consist of a series of straight line and
elliptical path segments. This approach has the following advantages: ' first,
good approximations of crosstrack error, distance to go, and desired heading
can be calculated; second, since the circle is a special case of the ellipse,
circular segments are inherently included in the horizontal path geometry; and
third, the specification of the path is relatively simple, requiring only a
series of data points consisting of an X-coordinate, a Y-coordinate, and a
desired heading.

The altitude and speed profiles consist of a series of straight-line seg-
ments in the "altitude (or speed) versus distance to go along the path' plane.
This provides the capability to approximate any arbitrary single-valued func-
tion. The profiles are specified as a table of "altitude (or speed) versus
distance to go" data points.

Lateral Path
The general purpose lateral path consists of a series of (X, Y) data
points, connected by either straight lines or elliptical sections, to form a
continuous flight path. In addition to the (X, Y) data, a desired heading at
each point is required to specify the path. The path generated passes over
each data point.

Stfaight Line Segment.- Consider the line segment defined by X Y1, and

1’
shown in Figure 11(a). If the

X2’ YZ’ and the point off the segment, X,, YA

segment and the point are rotated and translated to a coordinate system as
shown in Figure 11(b), then:

X1' =0
¥,'=0
X, =0
Y2f,= (Y2_- Y1) sin 0 _,(XZ —'X1) cos 0

17



. _ _ .
X," = (X, - X,) cos 0 + (YZ'_.Y1) sin 0
YA' = (YA - Y1) cos 0 - (XA - X1) sin 0

The perpendicular distance from the point to the line (crosstrack error) is

_XA'. The length of the segment is Yzf. The projection of the point on the

segment is (0, YA') and the length remaining on the segment past the projection

. . v o 1
point is Y2 YA . -

Elliptical Segment.~ The curved sections of the lateral path are generated
by fitting an elliptical segment between two data points. The selection of the
elliptical segment to be used is always determined in a coordinate system
where one of the data points is located at the origin and the entry or exit
heading for that point is along the Y axis. Data points are translated to this
new coordinate system prior to determination of the ellipse. - The elliptical
section used is defined such that the origin of the coordinate system is always
a point of maximum or minimum curvature on the ellipse and the length of the
segment is equal to or less than one—quarter of the length of the perimeter of
the ellipse. :

Sélecting the elliptical section: Consider the section of the ellipse and
the coordinate system shown in Figure 12. The equation for the ellipse shown
is:

N

2
(_x_-__a'_)__+y—-=1
_ 2 2

o

a
The slope, m, of this ellipse at point (%, y) is:

2

- P
y

m = P
a

If this slope and point (x, y) are given, then a and b are determined:

2
a=zx-mx
y - 2 xm
2 2
b = may
a-— X

For the elliptical section shown in Figure 12, a >{0. ‘To satisfy this condi-
tion, the following inequality ‘must hold: '

X'>-2m--
X

18



Similarly, for the case in which a <0, the inequality that must hold is:
L < om
X

The restrictions y/x > 2m for a > 0 and y/x < 2m for a <0 may appear too
limiting at first glance. It should be noted, however, that for a given set of
data points, the restriction encountered by placing the origin of the coordi-~
nate system on one of the points is not present if the origin is placed on the
other data point. This is illustrated in Figures 13 and 14. The elimination
of these path restrictions in this manner leaves only one major restriction
remaining. For a given set of data points connected by an elliptical segment,
the slope of the path at the exit point must be greater than the slope of a
straight line joining the points for a < 0. For a > 0, the slope of the path
at the exit point must be less than the slope of a straight line joining the
points. This is illustrated in Figure 15. This restriction precludes the
introduction of a point of inflection in the curved path unless the inflection
point is specified as a data point.

For a given pair of data points defined by X Y., M,and X,, Y,, M, it is

1’
possible to determine the equation of the ellipse that contains the two data
points, if the segment restrictions are satisfied, by appropriate rotation and
translation of the coordinate system. Given the ability to determine an appro-
priate elliptical segment, it is then possible to fit a smooth, continuous path
to a set of x, y data points using a combination of elliptical and straight
line segments. An example of such a path is shown in Figure 16. Note that if
two data points are to be connected with a straight line segment, the slopes at
the two data points are determined and only the x, y position is required to
specify these points. If a data point is the junction of two elliptical seg-

" ments however, then it is necessary to specify the slope of the path at that
data point in addition to the x, y position data.

Determination of crosstrack error: In order to determine the crosstrack
error while flying along an elliptical section, it is necessary to determine
the perpendicular distance from a given point to the ellipse. Consider the
ellipse shown in Figure 17:

) 2 2
.LE;:EEl_.+ X§.= 1

o

a

and a point A near the ellipse defined by:

X = XA
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The center of the ellipse is located at (a, 0) and the distance from the center
of the ellipse to the two foci is given by:

2 2

The coordinates of the foci are then given as:

.F1 (a - c),»O

&
]

(a+ ), 0

If XA, YA were located on the ellipse, then the normal (perpendicular) to the

ellipse at that point is the bisection of the angle defined as F1 AF2.

Let: 0 = bisection of angle F, AF,.

The angle from A to F, is defined by:

1

Y -Y

1 o A
6 = T —_——
1 tan XF - XA where XF, and YF are
1 coordinates of focus F1.
for the orientation shown, YF =0
1
-Y
-1 A
0, = tan
! Xp =X
1
Similarly:
=Y
-1 A
0. = tan
2 ) XF - X.A
2
0 is given as:
0 0
1+ %
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Consider an ellipse of the same form as described, except that b > a. For
this case, shown in Figure 18, the distance from the center .of the ellipse to
the foci is given by:

and the coordinates of the focal points are:

F1 = a, ¢C

F, = a, -c

In a manner similar to that previously presented, the angle 0 is determined to
be

0, +0
g o 172
2
where
o -1 ¢- YA '
17 Ta Ty
A
0 -1 ¢ - YA
2= Tan — ———x—
A

For small deviations of (XA,

normal to the ellipse. Then the projection (XE"YE) of (XA, YA) onto the

YA) off the ellipse, assume 0 still defines the

ellipse is defined by 6. The slope of (XE, YE) is the slope of a line perpen-
dicular to the normal:

M, = Tan ¢ + 90°)
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The equations for the ellipse and the slope of a point on the ellipse can be
solved to yield XE and Y in terms of a, b, and ME:

E
. azM
= E
T 2 2 2
b4+ a™ M E
b2
Y, = :
b2 + a2 M2

E

Given the capability to determine the projection of the aircraft position onto
a specified elliptical section, it is then possible to compute the magnitude
of the crosstrack error as:

XTRACK =|‘f(xA -'xE)2 + @, - YE)2

Where XA, YA is the actual aircraft position and XE’ YE is the projection

of this position onto the ellipse. The direction of the error is given by 6
as previously defined. ’

Determination of path distance: In order to determine the distance to go
from any point on the lateral path it is necessary to determine the length of
an elliptical segment. Determination of this length involves the use of
elliptical integrals for which there are no explicit solutions. For this
reason, a piecewise linear approximation of the elliptical segment is used to
calculate distance data. Consider the approximation shown in Figure 19 where:

and
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If the X axis is divided into n equal segments then:

*r

U

(Xn-- X n

where XT = X coordinate where the elliptical segments ends.

n. ' XTZ 1/2
S=Z (Yi“yi_1)2+n7 f0r0<X<Xr

where:
" b2 ) 1/2
¥y = b..—:;i-(xi - a)

If the speed of the aircraft is known, the bank angle required as it
traverses an elliptical segment can be determined from the following equation:

where

Bank Angle
Speed

Radius of’Curvature

QO o < S
]

Acceleration due to Gravity
The radius of curvature of a curve Y = F(X) at any point (X, Y) is given by:

R = (1 + 3{')3'/2

For an ellipse, this radius is given by

3/2
- [v? (2% - b3 + b7

R
ab4

23



Form of data entry: Data to describe the flight path is entered in the
form of X position and Y position information for each point. 1In addition, a
third entry is used to indicate whether a straight line or an elliptical sec~
tion should be used to join a data point to the next data point. Provision
for up to 50 data points is incorporated into the program. Storage is provided
for 5 different sets of data points. X position and Y position data are
entered in feet in signed decimal format. The coordinate system used is shown
in Figure 20. Data points to describe the flight path are entered, in order,
starting at the desired hover position and working backwards. A termination
code (77777) is entered last to indicate the point where the flight path
should start. The selection of a straight line or an elliptical section to
join a pair of data points is indicated by the third entry for each data point.
If two data points are to be joined by a straight line, then a flag code
(77776) is inserted along with the X, Y data for these points. If a data
point is the junction of a straight line and an elliptical section, then the
same flag code is inserted. If a data point is the junction of two elliptical
sections, then the third entry to be supplied is the magnetic heading, in
degrees, that the aircraft should have as it passes over that data point. The
form of the data entry for a sample path is shown as Table 1 and the path des-
cribed is shown as Figure 21. '
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5000
5091
5¢¢2
5¢¢3
5094
5¢95
5@¢6
5097

5¢1¢
5¢11
5@¢12
5¢13
5¢14
5¢15
5@¢16

5¢17

5¢2¢
5@21
5@22
5¢23
5¢24
5@25
5¢26
5027

5¢3¢
5¢31
5@32
5¢33
5034
5035
5¢36
5¢37

5040
5041
5042
5043
5044
5045
5046
5047

o¢
o9
22
o¢
77
22
77
76

22

77

76
22
77
76

77

75
22
¢

22
@0
74
22

a¢
74
22
@1
74
o0
o0
73

L)

73
22
77
73
22
77

¢ooe
1)
7720
Pa0
2187
7729
6647
7907

7720
4357

4217

772¢
2197
9277
¢gooq
4§57

4357
772¢
e300
@437
7726
372¢
6467
7726

7640
6467
7720
3560
$577
009
5670
9737

9132
1759
2797
7720
6647
6@@7

'772¢

@757

: 1740¢

LATERAL

¢

¢
77776
¢
3009
77776
60¢
4609

77776
2999
609¢

77776
3¢99
3¢ p¢

209¢

10009
77776

1200¢
77776

2099
13009
77776

4000
13009
77776

6000
1603¢

300
20009

9¢
1609
19000
77776
603

77776
360¢

TABLE 1

——

" Desired Heading —

PATH DATA

X1
Y4 |—— Data Point 1
Straight Line Flag —

X5
Y5

——— Data Point 5
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5@¢5¢
5¢51
5¢52
5053
5¢54

. 5@55

5@¢55
5@57

5060
5¢61
5062
5063
5064
5@¢65
5¢66
5@¢67

5070

5¢71
5@72
5¢73
5¢74
5@75
5076
5¢77

5109

51¢1
51¢2

6007
@055
@757
@117
7722
6647
9117
757¢

6647
6¢@7
9297
@757
6097
9055

@757
9117

7722
6647
@117
7579
6647
60097
772¢
9137

4517
772¢
7721

TABLE 1 (cont)
LATERAL PATH. DATA

17400
45
3600
20400
.45
600
20409
135

600
17409
135
3600
17400
45
3600
20400

45
600
20400
135
600
17400
77776
4009

14909
77776
77777 — End of Path Flag



Path restrictions: In order to simplify the geometry and the logic deci-
sions necessary to generate the lateral path, some restrictions on the data
used to specify the path are necessary:

e The path cannot have two consecutive straight line segments.

e A single elliptical section cannot be used to change the flight
plan heading by an angle greater than 90 degrees.

o Two consecutive data points cannot describe a path that contains
an inflection point. At least three data points are required
in this case. The program will flag this as an input data fault
and will advise the user. '

o The data points used cannot require a heading change in a distance
so short as to require the aircraft to exceed the nominal bank
angle limit. The program will flag this as an input data fault
and will advise the user. The nominal bank angle limit for a
given set of data is selected by the user.

® A velocity profile must be stored in the computer in order to
determine the aircraft bank angles. The profile must be de-
fined in terms of along-track-distance to go in the Z = ¢ plane.

Initial Path Capture Maneuver.- Whenever the lateral path is initialized,
it is necessary to compute a flight path from the present aircraft position to
the starting point of the path selected. The initialization will insure that
the aircraft enters the lateral path with the correct heading, as well as the
correct speed and altitude, for the speed and altitude profiles.

Capture Conditions: Consider the path capture situation shown in Figure
22, The point PN denotes the first point of the desired lateral path. The ob-

jective is to arrive at point P_ with a heading in the same direction as the

N

vector from PN to P This can be achieved by extending the vector

N -1

PN PN -1 and capturing it prior to reaching PN.

maximum allowable capture angle of a straight line is B, as shown in Figure
22, 1If AP is equal to zero, any capture attempt initiated from outside the
capture cone would fail to capture the line prior to reaching PN. Next, con-

Assume, however, that the

sider the worst case condition in which the initial aircraft position is on
the outer boundary of the capture region and in which the initial aircraft
heading is along the boundary and away from the path. The minimum aircraft
turning radius is:
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where V0 is the desired speed at start of horizontal path, and ¢max is the

maximum allowable bank angle. If a capture is attempted from this worst case
condition, the aircraft will parallel the shaded region boundary at a distance
2R. The cone vertex must therefore be moved along the heading vector a dis-
tance of X = 2R/sin B away from PN to insure that any capture attempt from

within the cone will be successful.

Path Capture Outside the Cone: Figure 23 depicts the téchniques for cap- -
ture used when the initial aircraft position (X,, YA) is outside the cone.

Iwo circles are constructed so as to be tangent to each other at the apex of
the cone (Xo, Yo)' The radius of each circle is:

v 2
o

R = ————
o g sin ¢nom

where ¢nom is the nominal bank angle. The center of circle 1 is:

]

X + R cos V¥
o o c

%

Yr

Y -R_ sin ¥

o o c
where wé is the initial path magnetic heading. The center of circle 2 is:

X, =X - R cos Y

o o c

TR

Y + R sin ¥
o (o} c

The circle used in the capture is the circle that lies on the same side of the
extended vector PN’ PN - 188 the initial aircraft position.

As long as the distance from the aircraft to the circle center is greater
than twice the circle radius, the aircraft is commanded to fly toward the
circle center. This is accomplished by making the desired heading

X - X
-1 “A R
¥ . = TAN ————
desired -YA .YR ‘
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where XA, YA

distance 2R0 from the circle center, the aircraft is commanded to capture the

is the present aircraft position. When the aircraft gets within a

circle. The desired heading becomes the heading tangential to the circle:

1 % X

wdesired = TAN §—‘TY—+ 90° for circle 1
A~ TR
X, - X, -

Viesireq = TAV | go—ot - 90° for circle 2
A~ 'R

The crosstrack error from the circle is:

_ 2 - 2 ,
Ro -HVQXA'— XR) + (YA_- YR) for circle 1

=1
]

2 42
V&XA - XR) + (YA_- YR) - R.0 for circle 2

=
.

Crosstrack error is negative if the aircraft position is to the left of the
path.

The decision whether to continue on the circle, or head for the start of
path, is made when the aircraft passes the cone apex. The aircraft is allowed
to exit the circle if the speed, altitude and heading are within the tolerance
limits allowed for the start of the lateral path. If these limits are not sat-
isfied, the aircraft is commanded to fly around the circle one more time.

Altitude Profile

The altitude path is specified by a series of data points. Each data point
consists of a distance to go along the flight path and a desired altitude at
that distance. The altitude change between two data points is a linear func-
tion of the distance difference between those points.

Consider a portion of the altitude profile as shown in Figure 24. Between
data point 3(S3, H3) and data point 2(82, HZ) the change in altitude as a func-

tion of distance is:

H, - H
AH=§—3-——-—S§--AS
3772
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and the altitude for any S (S2 <S§ < 53) is:

(H3 - H,)

H=H+ ——
G, -5,

(s -5

Since the slope of the path has discontinuities at the data points, a
transition procedure is required to provide a smooth flight path. The transi-
tion can be accomplished by switching to a new segment prior to completion of
the present segment. For any any S between S3 and SA the desired altitude
reference is given as:

(H, - H,)
H=H, + o2

2 ¥ (5 -5))

3~ 5y

At the switch point S = SA’ a switch to the segment defined by S1 H1 and SZ’

H, is made thus producing an artifical error He:

2
(H, - H.) (H, - H.)
= 2 1. - - 3 2 -
H, = [H1 + G, -85 (54 31)] [Hz + G, - 5, N Sz)]

and a desired vertical speed change from:

. . (H3 - Hz) .
H32 = -5 G. -5 Where S = Ground speed
3 2 along the path.
to:
R S el 14
21 (82 - S1)
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For a smooth transition, the net change in vertical speed at SA should be zero.

For this condition:

0= H32 - H21 - KH

K = T or H = —KHe
e
Since:
(H, - 1.) (H, - H,) [ (H, - H,) ]
3 2 2 1 2 1
0 = =S + S -K {H, + + (S S.)
| (S3 - Sz) (82 - S1) 1 (S2 - 31) A 1
(H., - H.)
3 2
+ K [%2;+ G. -5 y (SA Sz)]
3 2
Then:

Note that:
Uy -8By Uy - Hp)
- S1)

1(52-51)
ks Hy ~Hy Hy-Hy| [H, -H Hy-H 1 s 4l
A|5,-5, 75, -5, 5, -5, 5,-5, 2

or
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It should be noted that while this technique provides a smooth transition
between segments, it does not provide the correct value of altitude reference
for data-recording purposes during the transitionms.

Data to describe the altitude profile is entered in the form of distance-
to-go and desired altitude at that distance for each data point. Up to 25 data
points may be used to define an altitude profile. Storage is provided for five
different sets .of data points in the computer. Distance-to-go and altitude are
entered in feet using a decimal data format. Data points to describe the alti-
tude profile are entered, in order, starting at the hover position and working
backwards. A termination code (77777) is entered last to indicate the data
point where the profile should start. The form of the data entry for a sample
path is shown in Table 2.

TABLE 2
DATA FOR SAMPLE ALTITUDE PROFILE

* Input Data Point Entry
1 1 ' 0 Distance to go, in Feet
2 0 Desired Altitude, in Feet
3 2 200
4 : ‘ 25
5 3 300
6 35
7 4 1000
8 200
9 5 5000
10 1000
11 A 6 77,777 Termination
Code
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Speed Profile

The speed profile is specified by a series of data points. Each data point
consists of a distance to go along the flight path and a desired velocity at-
that distance. The velocity change between two data points is a linear func-
tion of the distance difference between those points.

Consider a portion of the velocity profile as shown in Figure 25. Between
data point 3(83, V3) and data point 2(82, VZ) the change in velocity as a func-
tion of distance is:

v, -V
Ay=-—=_2_Asg
S3 - S

and the velocity for any S (S2 <SS < S3) is:

vV, - V,)
3 2 :
V=V, + ——=— . (S -8.)
27 (5, -8, 2

A lead term corresponding to deceleration is generated by processing pre-
dicted future velocity through a washout routine as shown in Figure 26. This
lead term is applied to the pitch axis control system in order to initiate re-
quired pitch angle changes prior to the break in the velocity profile. The
predicted velocity term, V(t +a)’ is computed by first assuming that the

present actual velocity will remain constant for the next "a'" seconds and then

multiplying the actual velocity by ''a" to generate a lead distance. This lead
distance is then subtracted from the present distance-to-go along the path to
provide an approximate distance-to-go after "a" seconds. This approximate dis-
tance is then entered into the velocity profile program to compute an estimate
of the desired velocity after "a" seconds. A block diagram of this implementa-

tion is shown in Figure 27.

Data to describe the speed profile is entered in the form of distance-to-go
and desired velocity at that distance for each data point. Up to 25 data
points may be used to define a velocity profile. Storage is provided for five
different sets of data points in the computer. Distance-to-go is entered in
feet and desired velocity is entered in feet-per-second using a decimal data
format. Data points to describe the speed profile are entered, in order, start-
ing at the hover position and working backwards. A termination code (77777)
is entered last to indicate the data point where the profile should start. The
form of the data entry for a sample path is shown in Table 3.
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TABLE 3

DATA FOR SAMPLE VELOCITY PROFILE

Input | Data Point Entry
1 1 0 Distance to go, in Feet
2 0 Desired Velocity in
Feet-Per-Second
3 2 500
4 10
5 3 1000
6 25
7 4 2500
8 50
9 5 6000
10 60
1 6 10,000
12 60
13 7 77,000 Termination

Code




HARDWARE

The VALT Digital Navigation System is built around the Sperry Flight
Systems 1819A Digital Computer. This computer was combined with a set of ana-
log, digital, and human interface devices to form the VALT hardware set. All
of the interface hardware devices were specifically designed and fabricated for
this project. '

1819A Digital Computer

The 1819A Digital Computer (Figure 28) is a medium scale, general-purpose
computer specifically designed for airborne applications. The particular 1819A
configuration used for the VALT Digital Navigation System consists of 16,384
words of 18-bit core memory, 1096 words of 18-bit solid-state-read-only memory
and seven input/output channels,

Physical Characteristics.- The 1819A is contained in a single cast-
aluminum chassis which measures .194 meters high, .257 meters wide and .498
meters long in accordance with ARINC full ATR long form factor. The computer
chassis is divided laterally into two card bays. One card bay contains digi-
tal circuit components and the internal power supply while the second bay con-
tains digital circuit components and the core memory. All digital circuits
are mounted on plug-in printed circuit board assemblies. The entire chassis
assembly is indirectly forced-air-cooled by blowing external air through heat
exchangers built into the outside walls. Card interconnection is provided by
blade and fork connectors with wire-wrap terminations on a back plane.

The computer, as configured for the VALT system, weights 24.5 kilograms
and requires approximately 250 watts of power. The unit is mounted on a tray
plenum and receives cooling air from an external blower.

Control Section.- The control section contains circuitry necessary to pro-
cure, modify, and execute the instructions of a program stored in the memory
of the computer. It controls parallel transfers of instructions and data.
Direct and indirect addressing capabilities and automatic address and operand
modification are directed by the control section. This section controls all
arithmetic, logical, and sequential operations of the computer except those
assigned to the input/output section. It has facilities to permit an inter-
ruption of the running program when certain events require such interventions.

Arithmetic Section.- The arithmetic section performs all the 1's comple-
ment arithmetic, shifting, and logical operations for the computer under the
direction of the function code translation in the Control Section. The Arith-
metic Logic Unit (ALU) is used in conjunction with the two holding registers
X and D to perform addition and logical operations. Shifting operations are
performed using the X and W registers in combination with the AL and AU regis-
ters. The K register is used to hold the shift count for both the shifting
- operations, and the multiply or divide operations. The B register is used for
holding the current index value. The detection of an overflow condition is
also accomplished in the arithmetic section.
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Core Memogx;- The computer core memory internal to the unit contains
16,384 18-bit words of addressable storage locations. Several of these loca-
tions are special purpose and provide for the distinct functions shown in
Table 4.

TABLE 4
CORE MEMORY ADDRESS LOCATION

Memory
Address : - Assignment
(octal)

DRO Memory

00000 Fault Interrupt Entrance Register

00001 = 00010 | Index Registers

00011 Spare

00012 Power Fail Interrupt Entrance Register
00013 Spare

00014 i Overflow Interrupt Entrance Register

00015 . Spare

00016 Real-Time Clock Interrupt Entrance Register
00017 Scale Factor Shift Count Register

00020 and . | Spares

00021

00022 > 00037 | External Function Buffer Control Registers for Channels 1 - 7

00040 and Spares
00041

00042 —> 00057 | Output Buffer Control Registers for Channels 1 - 7

00060 and Spares
00061

00062 —> 00077 Input Buffer Control Registers"for Channels 1 -7

00100 - Spare
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TABLE 4 (cont)
CORE MEMORY ADDRESS LOCATION

Memory

Address : Assignment
(octal)

00101 > 00117 | External Interrupt Entrance Registers for Channels 1 - 7
00120 > 00141 Spares
00142 > 00157 | Output Monitor Interrupt Entrance Registers for Channels 1 - 7

00160 and Spares
00161

00162 = 00177 | Input Monitor Interrupt Entrance Registers for Channels 1 - 7
00200 | Power Up Entrance Address
00202 Self-Test Program'Return

00201, 00203 Instruction Word and Data Storage
> 37777 '

A write protect feature for 2048 consecutive storage locations is also pro-
vided. The write protect circuitry in memory control will not allow memory
locations 34000 through 37777 (octal) to be written into unless the protect
function is disabled. This function may be disabled via a switch on the com-
puter control panel.

Nondestructive Readout Memory.- A solid-state read only memory is also
provided with the computer. The 1024 18-bit words of Nondestructive Readout
(NDRO) memory are used to contain a self-test program an a paper tape load
program (Bootstrap). The computer has provisions for an additional 3072 words
of NDRO memory available in 1024-word increments. The 1024 words provided
with the computer are storage locations 70000 through 71777 (octal). The fol-
lowing table lists the address assignments for NDRO memory.
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TABLE 5
NDRO MEMORY ADDRESS LOCATION

Memory
Address Assignment
(octal)
70000 BITE Interrupt Entrance Register

70001 > 71722 | Self-Test Program Storage

71723 = 71777 | Bootstrap

Program Interrupts.- The computer has provisions for the interruption of
a running program by an event which may occur asynchronously with that program.
An interrupt suspends the normal program sequence and causes the execution of
the instruction located in a permanently assigned interrupt entrance address
in the memory. There are eight levels of interrupts in the computer with the
five lowest levels controllable via an interrupt lockout mask that is contained
in the Interrupt Lockout Register (ILR). The following is a list of the pro-
gram interrupts in descending order of priority:

(1) Power Fail

(2) BITE (Built-in-Test)

(3) Fault

(4) Overflow

(5) Real-Time Clock

(6) External Interrupt

(7) Input Monitor

(8) Output Monitor
The three lowest levels (external interrupt, input monitor, output monitor)
are input/output functions and, as such, they are processed by the input/output
section. These levels are given priority according to the input/output channel
involved with the channel priority taking precedence over the function prior-
ity. That is, if an output monitor interrupt on channel 2 occurs simultan-
eously with an input monitor interrupt on channel 3, the output monitor inter-

rupt will be honored first since channel 2 has a higher priority assignment
than channel 3.
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Input/Output Section.- The Input/Output (I/0) section includes those data
paths and control circuits used by the computer for communicating with exter--
nal equipment. Communication with the computer is carried on in either an 18-~
bit or 36-bit parallel mode. The interface uses .a full party-line data
transmission system with a single set of 36 twisted pairs for both transmit~
ting and receiving all data. The system is organized as one 36-bit parallel
channel and six 18-bit channels. Each channel has its own set of control lines
using 8 twisted pairs per channel. All references to input or output are made
from the standpoint of the computer; that is, "input' is always input to the
computer, and "output" is always output from the computer. The I/0 section
has access to the total 16,384 words of core memory.

I1/0 Buffering: The computer has the capability for communicating with
peripheral equipment on any and all I/0 channels concurrently with the execu-
tion of the program. Buffering operations, once initiated by the programmed
instruction, proceed to termination asynchronously with the program. The buf-
fer instruction selects the I/0O channel, channel mode (input, output, external
function), and designates the area of computer memory to be used by the channel
for storing incoming data or dispatching outgoing data.

I/0 Channel Priority: The input and output channels are numbered 1
through 7 with the highest priority being given to the lowest numbered channel
in the case of simultaneous requests for the same type of operation.

1/0 Memory Addresses: The I/0 section uses the assigned memory addresses
(buffer control words) which dictate the memory area affected by an input or
output operation. The other memory addresses that are used by the I/0 section
are allocated for I/0 interrupts. The I/0 section generates the addresses re-
quired to reference memory for all I1/0 requirements as well as for all inter-
rupts. These special addresses are held in the special address register for
utilization in referencing memory.

Control Lines: Inputs to the computer and outputs from the computer are
controlled using eight control lines. The control lines are the external
interrupt, input data request, input data enable, input data acknowledge,
external function request, external function acknowledge, output data request,
and output data acknowledge. These signals are listed in Table 6.
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TABLE 6

CONTROL SIGNALS USED FOR INPUT/OUTPUT

Signal Name Origin Meaning
Input Input Data Request Peripheral | Peripheral equipment has
Channel (IDR) Equipment a data word on the input
lines ready for the com-
puter to accept.
Input Data Enable Computer Computer is ready to sam-
(IDE) : ple input lines and peri-
pheral equipment must en-
able its line drivers.
Input Data  Computer Computer has sampled the
Acknowledge (IDA) word on the input lines.
External Interrupt Peripheral | Peripheral Equipment has
(EI) -Equipment an Interrupt Code Word on
the input lines ready for
the computer to accept.
Output Output Data Request | Peripheral | Peripheral Equipment is
Channel | (ODR) ' Equipment in a condition to accept a
word of data. from the
computer,
Output Data Computer Computer has put a data
Acknowledge (ODA) word on the output lines
for the Peripheral Equip-
ment to sample.
External Function Peripheral | Peripheral Equipment is
Request (EFR) in a condition to accept
an External Function mes-.
sage from the computer.
External Function Computer Computer has put an Ex-

Acknowledge (EFA)

ternal Function message

on the output lines for

the Peripheral Equipment
to sample. ’
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I/0 Function Priority:

The I/0 function priority circuits provide auto-

matic selection of the higher priority operation when two or more operations
are requested by peripheral equipment or by the computer at the same time.
Some real-time events, as well as certain information transfers, require

special handling or main program intervention.

These operations or interrupts

are processed by the I1/0 section according to a prearranged priority scheme.
The following is a list of the operating modes in descending order of priority:

(N
(2)
(3)
(4)
(5)
(6)

The above functions are

External Function Request

Input Request
Output Request

External Interrupt

Internal Interrupt from "Input Transfer with Manitor"

Internal Interrupt from "Output Transfer with Monitor"

given the listed priority according to the channel

involved, with the channel priority taking precedence over the function
priority.

Ins

tructions.- Two basic instruction word formats are used by the com-

puter,

the first of which is shown below.

FORMAT I INSTRUCTIONS

«——— 18 bits ————p»

17 ——

12

1 ——

0

N

A

J

f
NS

f is defined as the function code

u is defined as the twelve low order bits.

The definition and usage of u are determined by the function code utilizing
u in two distinct manners:

Q)

As a constant. For this case, u itself is the operand and requires
no further memory reference; however, u is "extended" to 18-bits.
(Refer to List of Instructions.)
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(2) As an address. For this case, u is used as the lower order 12-bits
of the base address referring to a memory cell. The base address is
15-bits, designated as W, OT Ugps and is described below:

«¢4——15 bits —p»

u, 14—12 | 11 ——————0
\—“v/_J\ " ~
P14-12 o
up is defined as a 15-bit address whose 3 high order bits .consist
of the 3 high order bits of P and whose 12 low order bits are
u. '
«——15 bits ——p»
Ugp! 14—12 {11 —0
\N-'J& ~v" J
SRZ—O u
U is defined as a 15-bit address whose 3 high order bits comnsist

of the 3 low order bits of SR and whose 12 low order bits are u.

Certain Format I instructions allow the use of either uP or uSR as the

operand address; for these instructions wu,, is used if SR is ACTIVE and up is

SR
used whenever SR is INACTIVE. (Refer to List of Instructions.)

FORMAT II INSTRUCTIONS

- 18 bits L
17—12 - 11—6 5——0
1\ N J\_ _J
I Va B i " aanmal

f m k

f is defined as the six-~bit function code (always equal to octal 50)
m is defined as the six-bit minor function code
k is defined as the six low order bits
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Format II instructions perform a variety of operations and can be classi-
fied in three instruction categories: '

Q)]

(2)

3

No. memory address needed. For this case, the information existing
in the computer's arithmetic or control registers and the value k
are sufficient to perform the specified operation.

36-bit enter/store. For this case, the memory cell immediately
following the instruction is used to contain the memory address
of Y. This address must be even.

Initiate input/output buffer. For this case, the two memory cells
immediately following the instruction are used to contain the buffer
control words. The complete instruction, therefore, must occupy
three sequential memory cells; the format is as follows:

Any address n 17 ——12 11 ——6 5—0
¢ J\ N J
~ —~ —~"
f m k
n+ 1 17 16 15 14 -0
A - ' J
i

Buffer Terminal Address
on INPUT and OUTPUT

Unassigned
Monitor
Unassigned

n+2 17 | 16 | 15 | 14 : 0

— J
—~

Buffer Initial Address

Unassigned -
Monitor
Unassigned
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Bit 16 (Monitor): If set to one, the monitoéor interrupt occurs upon suc-
cessful completion of the last transfer; if set to zero,
no monitor interrupt will occur.

NOTE: ©Normal buffer termination occurs when the incremented
buffer initial address word is equal to the buffer ter-
minal address word. Therefore, bit 16 must be set to .
the same respective value for both buffer control words.
Bits 15 and 14 will be set to values. according to the
maximum size of memory in the computer.

For all buffer control words, all bits above the most significant bit of
the terminal address must be exactly the same in both control words.

A complete repertoire of instructions is. given in Table 7.
Registers.- The 1819A has both addressable and non-addressable registers.

ADDRESSABLE REGISTERS

o AU - Uppgr accumulator, 18-bit arithmetic register

e AL - Lower accumulator, 18-bit arithmetic register

e A - AU and AL are linked together to form one 36-bit arithmetic register

® B — One of eight index registers. Each register is an 18-bit dedicated
memory location. The contents of the currently active register

are also contained in a hardware register in the control section.

e ICR - A 4-bit index control register which contains the identity of
the index register currently active.

o P - A 15-bit program address register which contains the address of
the instruction currently being entered for execution.

® SR - A 4~bit special register through which the program can control
which of the 4096-word banks in core memory is to be referenced.

e ILR ~ A 6-bit interrupt lockout register which.contains the interrupt
lockout mask. :
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NON-ADDRESSABLE REGISTERS

e DO and DE - Two 18-bit output buffer registers in the I/0 section for
transferring data or instruction words (external function)
to external devices. The DO register is the buffer regis-

"ter for the odd-numbered channels (1, 3, 5, and 7) and the
DE register is the buffer for the even-numbered channels
(2, 4, and 6).

e W - An 18-bit holding register used in the arithmetic section during
arithmetic, shifting, and logical operations.

e D - An 18-bit register used in the arithmetic section during arithmetic
and logical operations, and as a temporary operand address register.

e X - An 18-bit register used in the arithmetic section during arithmetic,
shifting, and logical operations.

e F - A 7-bit function register that holds the function code of the in-
struction being executed.

e K - A 6-bit register that receives the shift count.

e S - A 15-bit register that receives and holds the address of a main
memory location during a memory cycle. '

[
N
|

An 18-bit memory buffer register for all transfers to and from
memory.

e SAR - A 7-bit special address register in the I/O section that is used
for holding the special-purpose memory addresses.

@ BCW ~ A 16-bit buffer control word register in the I/0 section used in
all input and output transfers. ‘

1819A Control Panel

The 1819A Control Panel (Figure 29) is a special purpose peripheral device
used to facilitate software and computer hardware troubleshooting. The unit
provides direct visual inspection of the computer accumlators, instruction
register, and address register -through indicator lights located on the panel.
These indicator. lights also contain integral pushbutton switches which allow
the computer operator to preload the appropriate register. In addition, selec-
. tive skip and stop keys are provided together with indicator lights that dis-
play I/0 activity, overflows, faults, and interrupts. The 1819A Control Panel
is configured to allow operation of the computer in either the normal run mode
or in a step mode, In the step mode, instructions are executed one at a time
under manual control. ‘
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INSTRUCTION WORD

TABLE 7

1819-A REPERTOIRE OF INSTRUCTIONS

FORMAT | h?-f-12 111 -uﬂ

FORMAT (1 [17-¢-12 | 11-m-6 | 5-k-0]

46

{1) Y =uSIGN EXTENDED TO 18 BITS

@

EXECUTED FROM INTERRUPT ENTRANCE REGISTER, STORE P

fm SYMBOL INSTRUCTION DESCRIPTION s,:‘lvac
= 10" ENTAU ENTER AU WITH (V) (Yl—»-AU 4
=12% ENTAL ENTER AL WITH (Y) (Y)—s-AL 4
o =.32* ENTB ENTER B WITH (V) (Y)—»B a
e 36 ENTBK ENTER B WITH CONSTANT vy —=B (1) 2
z 70 ENTALK | ENTER AL WITH CONSTANT Y —=aAL (1) 2
5004* | ENTA ENTER AWITH (Y + 1, Y) (Y)—o- AL (Y + 1)—m-AU, Y = (P+ 1) 8
5072 ]| ENTICR ENTER INDEX CONTROL REGISTER {B) —»=(ICR), ko ,—#ICR, (kg )—=B | 6
5073 | ENTSR ENTER SPECIAL REGISTER kg.3—% SR 2
= 40" STRZ STORE ZERO IN Y 0—»-Y a
= 42+ STRB STORE (B} IN Y (B)—w=Y 4
w = a4+ STRAL STORE (AL) IN Y (AL)—mY 4
o = a6* STRAU STORE (AU} IN Y {AU) —mmY 4
e 72 STRICR STORE (ICR) IN Yq.5 (ICR)—»=Yg.5 4
2 74 - STRADR STORE (AL) IN Yg.11 {AL)—=Y0.11 4
75 STRSR STORE (SR) IN Yq.5 (SR} —#=Y(.5,. 0 —=SRq.3 4
50 06* | STRA STORE (A) INY +1, Y (AL) —=Y, (AU} —=Y + 1, Y = [P + 1) 8
=14* ADDAL ADD (Y} TO (AL) (ALY + (Y)—»-AL 2
Q = 16" SUBAL SUBTRACT (Y) FROM (AL) (AL) - (Y) —s=AL 4
5 = 20* ADDA ADD (Y + 1, Y) TO (A} (Al + (Y +1, Y)—»=A 6
s = 22* SUBA SUBTRACT (Y + 1, Y) FROM {A) (Al = (Y. 41, Y)—sA 6
z = 24* MULAL MULTIPLY (AL} BY (Y} (AL) * (V) —m-A 24
z = 26* DIVA DIVIDE {A) BY (Y} (A)T{Y) —~AL, REMAINDER—m=AU | 24
< 37 ENTBKB ADD CONSTANT TO (B) (B) + Y—==B 2
71 ADDALK | ADD CONSTANT TO (AL) (AL) + Y—=AL (1) 2
IFB=(YLP+2— P 2
9 56 BSK B SKIP IFBF(Y); (B) + 1—s-B &P+ 1—8P
= IF(Y)=0;P+2—mP 6
*x v
w 57 ISK INDEX SKiP IF(Y):;Z&O;(Y)- 1—Y &P+ 1—P
e IFB ¥0; (B) - 1—#B & Y—mP 2
z 73 BJP B JUMP IFB=0:P+ 1—tep
@ 50 70 | XFRBL TRANSFER (B} TO AL (B)—mAL 2
0z 5071 | XFRLB TRANSFER (AL) TO B (AL)—s=B .2
Co 5074 | XFRLU TRANSFER (AL) TO AU (AL)—sAU 2
F 50 75 | XFRUL TRANSFER (AU) TO AL (AU)—m-AL . 2
|l q 30* IRJP INDIRECT RETURN JUMP P+1—mm(Y) (V) +1—eP () 6
wl| 2 34+ P UNCONDITIONAL JUMP Y—P 2
218 54 IJPEI INDIRECT JUMP AND ENABLE INTERRUPTS (Y) —s=P AND ENABLE INTERRUPTS 4
<)z 55 1P INDIRECT JUMP (Y)—ep 4
x 76 RJP RETURN JUMP P+1—mY, Y+ 1—mpP (D) 4
COMPARE NOT SET COMPARE SET
- 60 JPAUZ JUMP (AU) = JPEQ JUMP M = (AL} Y—#-P TEST CONDITION MET 2
ol < 61 JPALZ JUMP (AL) = JPEQ JUMP M = (AL) Y—P TEST CONDITION MET 2
alés 62 JPAUNZ  JUMP (AU) 0 |JPNOT  JUMPM # (AL} | Y—P TEST CONDITION MET 2
[ 63 JPALNZ  JUMP (AL} 0 |JPNOT  JUMPM % (AL} | Y—s=P TEST CONDITION MET 2
21a 64 JPAUP JUMP (AU) 2 +0 |4pMLEQG  JuMPM <(AL) | Y—=P TEST CONDITION MET 2
<|Z 65 JPALP JUMP(AL) 2 +0 |[JPMLEQ JUMPM < (AL) | Y—w=P TEST CONDITION MET 2
o 66 JPAUNG  JUMP (AU} < -0 |[JPMGR  JUMPM > (AL) | Y—»P TEST CONDITION MET 2
67 JPALNG  JUMP{AL) <-0 |JPMGR  JUMPM > (AL) | Y—P TEST CONDITION MET 2
NOTE: Y =Py12.94+ug.11
= SR SENSITIVE Yq2.14 = SRg.2, Yp-11 = ug-11 IF SR SET
* B MODIFICATION OF “Y* POSSIBLE; ADD SUFFIX B TO SYMBOL AND ADD 1 TO {-CODE, Y = ug.11 + Bg.17
NOTE: IF SR SET AND B MODIFICATION REQUESTED, Y9497 = SR02+ 812.17: Y0-11 = up-11 + Bg-11




TABLE 7 (cont) ‘
1819-A REPERTOIRE OF INSTRUCTIONS (cont)

fm SYMBOL INSTRUCTION DESCRIPTION Ef‘;g
02+ | CMAL | COMPARE AND SET DESIG. (AL): (V) a
=06+ | cmsk COMPARE WITH MASK AND SET DESIG. L (AL) (AU): L {Y) (AU 4
4 =04* |SLSU SELECTIVE SUBSTITUTE L {AL) TAU} + L (Y) (AU) —AL 4
g 51 SLSET | SELECTIVE SET (INCLUSIVE OR) L (AL) + (Y)—=AL:SET (AL} FOR (Y = 1 a
5 52 SLCL SELECTIVE CLEAR (LOGICAL AND) L (AL} (V) —s=AL; CLEAR (AL}y FOR (Y)y = 0 a
e) 53 sLCP SELECTIVE COMPLEMENT (EXCLUSIVE OR) | L {AL) ® {Y) —s-AL; COMPLEMENT (AL} FOR (Yiy=11} 4
- 5061 | CPAL | COMPLEMENT (AL) (AD) —s=AL , 2
5062 | crPAU COMPLEMENT (AU) (AU) —»-AU 2
50 63 | CPA COMPLEMENT (A) (A) —mA 2
50 41 | RSHAU | RIGHT SHIFT (AU) SHIFT RIGHT k BIT 2+ k
5042 | RSHAL | RIGHT SHIFT (AL) POSITIONS END OFF AND FILL OR
e 50 43 | RSHA RIGHT SHIFT (A) UPPER k BITS WITH ORIGINAL SIGN 2+k+1
I LEFT ROTATE A UNTIL Azg 7 Azgq 4+ k
@ 50 44 | SF SCALE FACTOR ROTATE OR K — SHIFT COUNT = 0, THEN OR
k — SHIFT COUNT—» 00017 4+k+1
50 45 | LRTAU | LEFT ROTATE (AU) LEFT ROTATE k BIT 2+ k
5046 | LRTAL | LEFT ROTATE (AL) POSITIONS OR
5047 | LRTA LEFT ROTATE (A) 2+k+1
50 51 | SKPNFL | SKIP ON NO FLAG P+2—m P IF FLAG NOT SET 2
T 5052 | sSkPOv | SKIP ON OVERFLOW P+2—sPIF OVERFLOW SET 2
= 50 53 | skpnov | skip On NO OVERFLOW P+ 2—w= P IF OVERFLOW NOT SET 2
a | % 50 54 | SKPODD | SKIP ON ODD PARITY P +2—m P IF SUM OF ONES IN A IS ODD 2
% - 50 55 | SKPEVN | sKI1P ON EVEN PARITY P +2—#= P {F SUM OF ONES IN A IS EVEN 2
50 21 | skPiN | sKiP ON INPUT INACTIVE P +2—s P IF CHANNEL k INPUT IS INACTIVE 2
) 50 22 | skPoiN | skiP ON OUTPUT INACTIVE P +2—8=P IF CHANNEL k OUTPUT IS INACTIVE 2
- 50 23 | SKPEIN | SKIP ON EXF INACTIVE P+ 2—sP IF CHANNEL k EXF IS INACTIVE 2
50 50 | skp SKP ON KEY SETTING P+2—8 P IF k = CONSOLE KEY SETTING 2
5011 | IN INPUT TRANSFER (P+1)—m60+ 2k, [P+ 2)—s= 61 + 2k 10
SET INPUT CH k ACTIVE
5012 | OUT OUTPUT TRANSFER (P+1)—w=40+ 2k, (P + 2] —a=41 + 2k 10
5 , SET OUTPUT CH k ACTIVE
& 5013 | EXE EXTERNAL FUNCTION TRANSFER SET EXTERNAL FUNCTION CH k ACTIVE 2
5 5014 | 10STP | TERMINATE INPUT/OUTPUT CLEAR ACTIVES ALL CH AND SET ALL LOCKOUTS 2
Q EXCEPT MASTER
5 5015 | INSTP | TERMINATE INPUT CLEAR INPUT ACTIVE CH k 2
2 50 16 | OUTSTP | TERMINATE OUTPUT CLEAR OUTPUT ACTIVE CH k 2
= 50 17 | EXFSTP | TERMINATE EXTERNAL FUNCTION CLEAR EXTERNAL FUNCTION ACTIVE CH k 2
50 26 | OUTOV | OUTPUT OVERRIDE SET OUTPUT REQUEST CH k 2
50 27 | EXFOV | EXTERNAL FUNCTION OVERRIDE SET EXTERNAL FUNCTION REQUEST CH k 2
- 50 30 | RIL REMOVE INTERRUPT LOCKOUT ENABLE ALL INTERRUPTS (IGNORE k! 2
g 5034 | SIL SET INTERRUPT LOCKOUTS TRANSFER k TO INTERRUPT MASK 2
E3 AND ENABLE ALL INTERRUPTS
=z 50 24 | WTFI WAIT FOR INTERRUPT HOLD SEQUENCE UNTIL INTERRUPT 2
STOP 50 56 | STOP STOP ON KEY SETTING STOP IF k = CONSOLE KEY SETTING 2
o 50 20 | NOOP | NO OPERATION i 2
2 5040 | NOOP | NG OPERATION 2
= 5060 | NOOP | NO OPERATION 2
" 5064 | CLRFL | CLEAR FLAG 2
<] 5065 | SETFL | SET FLAG 2
g 50 66 | CLROVF | CLEAR OVERFLOW 2
> 50 67 | SETOVF | SET OVERFLOW 2
00.01,77 | FAULT GO TO FAULT INTERRUPT REGISTER 2
FAULT| 5000,5077

ASSIGNED CORE MEMORY LOCATION

000

001 -010
-012

014

016

017

022-037

FAULT INTERRUPT 042 - 057
INDEX REGISTERS 062- 07/
POWER FAIL INTERRUPT 102-117
OVERFLOW INTERRUPT 142 - 157
REAL TIME CLOCK INTERRUPT 162-177
SCALE FACTOR SHIFT COUNT 200

EXF BUFFER CONTROL WORDS 70000

OUTPUT BUFFER CONTROL WORDS
INPUT BUFFER CONTROL. WORDS
EXTERNAL INTERRUPT

OUTPUT MONITOR INTERRUPT
INPUT MONITOR ANTERRUPT
POWER ON ENTRANCE

BITE INTERRUPT

@ INTERRUPT MASK: BIT 5 - MASTER; BIT 4 - OVERFLOW; BIT 3 - OUTPUT MONITOR; BIT 2 - INPUT MONITOR;
BIT 1 - EXTERNAL INTERRUPT; BIT 0 - REAL TIME CLOCK

PUB. NO. 61-0204-00-01
REVISED JANUARY 1973
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The 1819A Control Panel is housed in a stand-along cabinet which measures
.279 meters high, .442 meters wide and .241 meters long. The unit weights
approximately 4.082 kilograms.

Digital Interface Unit

The Digital'Interface Unit (DIU) provides the capability to convert analog
signals into digital data and to convert digital data into analog signals. The
DIU is shown in Figure 30.

Physical Characteristics.- The DIU is contained in an aluminum chassis
which measures. .194 meters high, .124 meters wide and .562 meters long. The
unit weighs 7.25 kilograms and uses approximately 90 watts of power. The
chassis is divided into three card bays with each bay containing five card
assemblies. The card interconnection wiring is provided by plug-in connectors

“and conventional harness wiring attached to a connector plate.

Input Section.- The DIU input section consists of 30 analog buffer ampli-
fiers, a 32-channel analog multiplexer, a sample-and-hold amplifier, and a
high-speed, 12-bit A/D converter. The A/D converter is time-shared by the
multiplexer which is controlled by the DIU control logic section. A block
diagram of the input section is provided in Figure 31.

The analog buffer amplifiers provide overvoltage protection for the DIU
multiplexer and converter circuits as well as providing the voltage gains
necessary to transform all analog input signals to a *10 volts dec full scale
level.

The 32-channel multiplexer is implemented with series field effect tran-
sistor switches. The particular analog channel that is being selected at
any one time is determined by a counter in the DIU logic section.

The A/D converter is a high-speed, 12-bit, successive-approximation con-
verter with a conversion time of less than 30 microseconds. The 12-bit con-
verter provides an effective analog resolution of .0049 volt dc at *10 volts
dc input scaling. A sample and hold amplifier is used to provide a relatively
constant input signal to the A/D converter during the conversion process.

The A/D conversion cycle is initiated by a start-convert command generated
by the control logic section. This command triggers a 20-microsecond mono-
stable multivibrator, which commands the sample-and-hold circuit to sample the
selected analog input. At the completion of the sample period, the transition
of the monostable sets the convert logic command through 3-microsecond delay,
which allows the sample-and-hold output to settle out before conversion begins.
The converter completes the conversion under control of its internal clock and
generates an end-of-convert command which is sent to the control section. The
digital data is held on the output data lines until the input acknowledge is
received from the 1819A. The acknowledge command is also used to step the
sequential counter in the control logic section, thus starting the conversion
cycle again.

48



Discrete input signals are transmitted to the 1819A computer through a
digital multiplexer when the DIU logic counter output equals 31. A total of
12 input discretes are provided.

Output Section.- The 30 analog output voltages are generated by 30 sep-
arate Digital-to-Analog (D/A) converters. Each of these converters provides
a continuous output voltage that is a function of the 12-bit digital code that
is applied. A block diagram of the DIU output section is shown as Figure 32.
Each converter is connected to a 12-bit digital data storage register that pro-
vides a fixed digital code to the converter between data updates from the
1819A computer. The storage registers are updated by sequentially generating
a series of strobe-and-latch commands such that the appropriate storage regis-
ter takes data from the data bus at the proper time. Strobe generation is
accomplished in the logic section and is a function of the I/0 transfer rate
between the DIU and the 1819A computer. In this manner, the correct strobe
is generated for each computer-output word transferred to the DIU. The use of
12-bit D/A converters provides a full scale output voltage range of -10 volts
dc to +10 volts dc with a resolution of .0049 volt dec. :

The output of D/A converter number 30 is used to provide a test voltage
to the input section of the DIU. This signal provides a continuous end-around
test of the DIU input section, I/0O transfers, sequence logic, and output sec-
tion strobe logic. The test signal is reconverted into digital form and
transmitted back to the 1819A computer where a test subroutine compares the
returned digital data with the original digital data. A DIU test error mes-
sage is transmitted to the navigation/guidance control panel if the difference
between these two values exceeds a selectable tolerance.

In addition to the analog output voltages, the DIF output section also
provides 12 discrete outputs. The discretes are generated in the 1819A com-
puter and are latched into a storage register in the DIU in the same manner as
the D/A converter codes. )

Logic Section.- The logic section provides the counting and timing func-
tions necessary to sequence and control data transfers between the DIU and the
1819A computer. The DIU logic controls the I/0 such that input data transfers
are alternated with output data transfers so that the same counter and sequence
logic can be used for A/D and D/A conversions. A block diagram of the logic
section is shown in Figure 33.

A DIU transfer sequence is initiated by the 1819A computer under control
of the system software. The computer transmits a forced External Function Ac-
knowledge (EFA) with a code word to the DIU to reset all the DIU control logic
and preset the counter to one of four starting positions. The DIU then initi-
ates an A/D conversion sequence and also transmits an Output Data Request (ODR)
to the computer, to indicate that the DIU is ready to accept the first output
data word. Output data is then transmitted to the DIU by the 1819A, together
with an Output Data Acknowledge (ODA). The DIU uses the ODA to latch the data
into the correct storage register in the output section. When the DIU receives
the ODA, and the A/D conversion sequence previously initiated has been
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completed, the DIU places the converted data on the data lines and transmits an
Input Data Request (IDR) to the computer. Once the computer accepts the input
data, an Input Data Acknowledge (IDA) is transmitted back to the DIU which ad-
vances the DIU counter and repeats the sequence. The total number of I/0 trans
fers is controlled by the 1819A under software control. A DIU logic section
timing diagram is shown in Figure 34,

Navigation/Guidance Control Panel

The navigation/guidance control panel is a general-purpose computer inter-
face unit that provides a method of gaining access to the 1819A computer pro-
gram during flight test. The panel electronics converts commands manually
entered through the front panel controls into the voltage levels and word for-
mat necessary for transmission to the computer. In addition, output informa-
tion from the computer is decoded and displayed in various forms on the front
panel.

Physical Characteristics.- The navigation/guidance panel (Figure 35) is
configured as a panel-mounted unit [as per MS25212 (ASG)] intended for mounting
in an aircraft panel rack. The unit measures .229 meters high, .146 meters
wide and .188 meters long and weighs 3.7 kilograms. The panel contains three"
printed circuit board assemblies and two hand-wired circuit board assemblies.
The circuit board interconnection wiring uses plug-in circuit board connectors
and a conventional wiring harness attached to a connector plate.

OQutput Section.- Data is transmitted from the 1819A computer by four

twisted wire pairs. Differential line receivers are used to provide the nec-
essary interface to the TTL logic levels used in the navigation/guidance panel.
" Data interface is identical to that used in the DIU. Incoming data is sequen-
tially multiplexed into data storage registers by a counter in the control
panel logic section. The contents of the storage registers are displayed on
the front panel in two forms. Numerical data such as the contents of a memory
location is presented on a numerical readout display. The readouts are planar
gas tube indicators using a 7-segment character format. A total of 11 digits
of display is provided in one 6-digit group and one 5-digit group. The neces-
sary BCD-to-7-segment decoders are contained within the navigation/guidance
panel so that display information can be output ‘directly from the digital com-
puter memory without additional software processing. Display blanking is under
program control.

Mode status and flag information from the storage registers is displayed
in the form of lighted legends on the front panel pushbuttons. Selection and
control of these indicators are completely determined by the software. One
data bit is required to be set for each indicator. All necessary lamp-driving
circuits are contained in the unit. Indicator lamps operate from the aircraft
28 volts dc system. A block diagram of the output section is shown as Figure
36. '
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Input Section.- Information is input to the navigation/guidance panel by
one of three types of front panel controls: a numerical keyboard, a rotary
selector switch, or 1 of 14 momentary pushbuttons. Maximum flexibility is ob-
tained by making all input device functions a matter of software
implementation. i )

A sequential counter in the control section multiplexes each input device
onto the data lines for transmission to the 1819A computer. Differential line
drivers are used to drive the twisted pair data lines. A block diagram of the
input section is shown in Figure 37.

Pressing one of the keyboard or indicator'pushbuttons sets a unique bit in
the transfer word sequence as long as the button is held down. Decoding of the
bit and subsequent action within the 1819A are determined entirely by software.

Selection of a particular rotary switch position sets one bit in one of
four words associated with the rotary switch. As in the case of the push-
buttons, the decoding of the switch position and the subsequent action taken is
determined by .the software. '

Control Section.— The navigation/guidance control section provides the
timing and counting circuits necessary to sequence and control data transfer
between the navigation/guidance panel and the 1819A computer. The operation
of the logic section is similar to the logic section used in the DIU.

TDS Interface Unit

The TDS Interface Unit (TIU) is a digital data buffer unit placed between
the 1819A computer and the Transponder Data System (IDS). The TDS serves as
the data link between the aircraft and the ground facilities. Both uplink and
downlink data are transmitted through the Tramsponder Data System and the TIU.

Physical Characteristics.- The TIU (Figure 38) uses the same chassis and
general construction as the DIU. The unit contains four printed circuit board
assemblies and six hand-wired circuit board assemblies.

Uplink Section.- The TIU is organized into two major sections: the up-
link section and the downlink section. The uplink section provides the logic
and counting circuits necessary for transmission of data from the TDS uplink
receiver to the 1819A computer. The TIU uplink section contains a 32-word,
solid-state, memory which acts as- a buffer between the TDS and the computer.
The buffer memory is loaded by the TDS at a high update rate and then read
into the 1819A core memory at a lower rate. Transfers of data from the TDS
to the TIU are initiated by the TDS. Transfers of data from the TIU to the
1819A are initiated by the 1819A. A block diagram of the uplink section is
shown in Figure 39.

Uplink data from the TDS is in the form of 16 proportional data words and
16 groups of four discrete signals. Proportional data words are ten bits in
length, but double precision capability is provided through software manipu-
lation in the 1819A computer and in the ground computer.
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Data transfers between the TDS and the TIU can be in either block mode or
single-word transfer mode. In the block mode, a block of uplink data is trans-
ferred to the TIU in a high-speed sequential operation at the end of each TDS
transmission frame. In the single-word mode, each piece of uplink data is
transferred from the TDS to the TIU as it is received by the TDS.

Downlink Section.- The downlink section provides the logic and counting
circuits necessary for transmission of data from the 1819A computer to the TDS.
The downlink section contains a 64-word, solid-state, memory which acts as a
buffer between the 1819A and the TDS. The buffer memory is loaded by the 1819A
"at a rate determined by the software and is read into the TDS at a higher rate.
Transfers of data from the 1819A to the TIU are initiated by the 1819A. Trans-
fers of data from the TIU to the TDS are initiated by the TDS. A block diagram
of the downlink section is shown in Figure 40.

Downlink data transmitted to the TDS is in the form of 48 proportional data
words and 16 groups of 4 discrete signals. Proportional-data words are 10 bits
in length, but double precision capability is provided through software mani-
pulation in the 1819A and in the ground computer.

Data transfers between the TIU and the TDS can be in either block mode
or single-word transfer mode. In the block mode, the entire contents of the
TIU buffer memory are transmitted to the TDS in response to a TDS demand. In
the single-word mode, a single proportional data word or a single group of four
discrete signals is transmitted from the TIU to the TDS in response to.a TDS
demand.

Flight Equipment Pallet

The flight equipment pallet provides the mounting tray and cooling air
plenum chamber for the 1819A computer when the navigation system is installed
in the CH-47B helicopter. In addition, the pallet contains the mounting tray
for the digital interface unit, the electrical junction box, the system inter-
connecting wiring, and the interface connectors for the ground support
equipment.

Ground Support Equipment

A set of Ground Support Equipment (GSE) was specifically designed for the
digital navigation system in order to provide a means to both program the 1819A
computer and to isolate malfunctions in either the system hardware or software.
The GSE is shown in Figure 41. The GSE contains a paper-tape reader, ‘a paper-
tape punch, a keyboard printer, a peripheral-device control unit, and the
necessary interconnecting wiring and cables. In addition, the GSE contains a
blower and mounting tray with a plenum chamber for the 1819A computer, as well
as an interface for a high-speed line printer.
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The GSE is designed to operate in one of two configurations. When used in
conjunction with the 1819A computer and the 1819A control panel, the GSE can be
operated in a stand-alone mode to provide the interface between the 1819A com-
puter and the system programmer. The GSE is used in this mode to write, check,
edit, and assemble programs for the computer. To facilitate a complete check-
out of the system software, the GSE contains the interconnecting wiring and
cables necessary to operate all the system hardware components independent of
the flight equipment pallet or the CH-47B aircraft.

The GSE can also be configured to operate as a system support tool for the
flight equipment pallet.

In this configuration the GSE is connected directly to the pallet with four
test cables while the pallet and the system hardware components are installed
in the aircraft. When used in this manner, the GSE provides the capability to
monitor and change the system software while the system is in operation.

Carry-On Load/Dump Unit

A portable Carry-On Load/Dump (COLD) unit was designed to provide limited
ground support for the flight system in those cases where the primary GSE is
not available. The COLD unit provides the capability to load the 1819A memory
from a magnetic tape cassette and to store the contents of the 1819A memory on
the cassette. The COLD unit connects directly to the pallet through the same
cable set that is used with the GSE. In addition to the read-and-store capa-
bility, the -COLD unit allows the operator to start and stop the 1819A, and to
select the program start location. With this capability, the operator can per-
form a bootstrap load into the computer. The COLD unit is shown in Figure 42,
and the front panel of the COLD unit is shown in Figure 43,
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SOFTWARE

The software supplied with the VALT system can be classified as either
flight software or ground utility software. The flight system software con-
sists of a set of specialized subroutines, one of which is a checkout routine
and the rest of which form the in-flight running program. The ground support
utility package consists of programs that can be used to modify old software
or create new software for the 1819A computer.

The software can be used in one of three configurations. In flight, only
the running program is used. On the ground, the running program can be used
in conjunction with a utility routine and the lateral path checkout routine to
test or troubleshoot the flight software. In the third configuration, which is
again a ground configuration, only the utility programs are used.

For the first two configurations described above, the computer memory is
organized in the following manner: Bank ¢ contains the majority of the running
program; Bank 1 is reserved for a utility routine; Bank 2 contains the lateral
path program and the lateral path checkout program; Bank 3 contains the program
variables, arithmetic routines and, in protected memory, the routines which
service the navigation/guidance control panels.

4 Flight System Software

The flight system software is organized as a group of specialized subrou-.
tines. The lateral path plot routine is a ground checkout routine while the
remaining routines form the flight system running program.

Flight System Running Program.- When ac power is applied to the 1819A, the
- program register is set to (P2¢@ once the power supply voltages are within des-
ignated tolerances. If the 1819A control panel is not connected, the instruc-
tion in (P2¢@ is immediately executed. The VALT flight system software
contains a SIL'77 in location $@2¢0P which disables all interrupts. The next
instruction is a jump to the power up routine which performs the following
functions: ' '

e Resets all real-time integrators to zero

® Sets all mode flags to off status

® Clears all control panel storage locations

® Restores all critical interrupt locations

Upon completion of the above functions, the real-time clock interrupt is
enabled and program control is transferred to the background routine. This
routine is executed during the time left over in the real-time cycle loop once

the running program has been executed. Nonreal time programs such as curved
path initialization are executed in background.
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A Real-Time Clock (RTC) interrupt is generated by the 1819A every milli-
second. If the RTC interrupt has not been masked out, normal program execution
is suspended and the instruction located in $@@16 is executed. Location @@@16
in the VALT flight system software contains a jump to a routine called MASTER.
The MASTER routine controls the real-time loop and enables time sharing between
this loop and the background program.

The Executive (EXEC) routine is the primary real-time loop sequencer. It
is called by the MASTER routine every 50 milliseconds. The EXEC routine exe-
cutes inner loop control laws immediately upon being called and then proceeds
with normal real-time programs. Twenty-five milliseconds into the computa-
tional cycle allotment time, MASTER interrupts EXEC, re-executes the inner

loop, and then returns to normal EXEC operation. A typical computational cycle
is shown below. '

EXEC EXECUTION BACKGROUND
EXECUTION
INNER INNER
Loorp LooP
COMPUTATIONAL CYCLE ALLOTMENT
1 L 1 | {
0 10 20 25 30 40 50
TIME (MILLISECONDS] 715-69-77

In the above case the computational cycle allotment is 50 milliseconds.A
The EXEC routine execution time is 40 milliseconds (including two executions of
the inner loop) leaving 10 milliseconds for background computations. Since the
background routine is typically 20 milliseconds long, it will take two cycles
(100 milliseconds) to completely execute background. Similarly, if the EXEC
time is less than 30 milliseconds, the background program may be executed more
than once within the computational cycle.

Initially, the EXEC routine executes the following sequence:

(1) Performs 25-millisecond integrations

(2) Scales high frequency inputs-from the DIU

(3) Processes TDS inputs

(4) Executes inner loop control laws
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(5) Performs low frequency integrations and filters
(6) Executes hover augmentation control laws

EXEC then calls the proper outer loop subroutines in order to implement the
desired flight mode. If neither approach mode has been engaged, EXEC checks
to see if any or all of the hold modes are engaged. If the heading hold mode
is engaged, EXEC calls HDGHLD. If the altitude hold mode is engaged, ALTHLD
is called. With the speed hold mode engaged, EXEC calls SPDHLD. With all
control law functions complete, EXEC then services the navigation/guidance con-
trol panels. Mode indicators on the panels correspond to several of the soft-
ware mode '"flags" which are used by EXEC. These flags are created by EXEC
based on navigation/guidance panel inputs and flight conditions.

Major Flight System Subroutines.-

Arithmetic and Convenience Routines: These routines include square root,
sine, cosine, arctangent, arcsine, BCD-to-Octal and Octal-to-BCD conversion.
In addition, a general-purpose time integration routine using trapezoidal
approximation is provided for use with the filter and control law routines.

Control Panel Routines: These routines service the navigation/guidance
panel to determine which buttons have been pushed, what the rotary switch posi-
tion is and what should be displayed. A utility routine is included which
allows the user to inspect and change computer memory locations, thus providing
the capability to program the computer through the panel. In addition, a fault
recovery routine allows the user to locate and correct invalid instructions in
the program.

Control Law Routines: These routines implement automatic pitch, roll, yaw,
and collective pitch axis control. Specific control laws employed are a func-
tion of flight conditions and mode(s) engaged.

Vertical Velocity Command System (VVCS): A VVCS using control laws pro-
vided by NASA is implemented. Nine gains define the VVCS configuration. Five
configurations may be stored in the computer at one time. '

Service Routines: These routines initiate the I/0 sequences to the
navigation/guidance panel, the digital interface unit, and the TIU.

Flight Director Control Laws: These routines generate the outputs that
are to be sent to the flight director command cues. The flight director
routines are independent of the routines that generate the automatic commands.

Path Geometry Routines: These routines generate the references for flying
the lateral path and the vertical and speed profiles. The initialization rou-
tines check the path data for errors, fit the curved path to the data points
and generate the data required to maneuver the aircraft to the start of the
path. The lateral path routine calculates crosstrack error, desired heading,
and raw distance-to-go. This raw distance-to-go is filtered with ground speed
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to obtain a smoothed output. The vertical profile routine generates an alti-
tude reference and a vertical rate reference. The speed profile routine gen-
erates a speed reference and a predicted speed reference two seconds ahead.

Terminal Area Navigation System (TANS) Routine: This routine implements
four second order complementary filters to generate smoothed XYZ radar position
and barometric altitude.

Lateral Path Plot Routine: This routine generates a plot of the path
data stored in the computer and is used as a ground check on the validity of
the path. The plot is generated by placing a simulated point mass aircraft on
the starting data point of the path, displacing the simulated aircraft some
distance along the tangent to the path at that point, projecting the new air-
craft position back onto the path to obtain a new path position, and then re-
peating the above procedure until the end of the path is reached.

Ground Support Utility Software

The ground support utility package is the primary software tool for the
system programmer. This package, when used in conjunction with the ground sup-
port equipment, provides the programmer with the capability to write, edit,
assemble, and debug programs for the 1819A Digital Computer. The utility pack-
age consists of five programs: The 75~code loader, the manual utility, the
extended utility, the text editor, and the assembler.

75-Code Loader.— The 75-code loader is used to load relocatable formatted
tapes. The loader itself is loaded using the bootstrap routine which resides
in the 1819A read-only memory. The 75-code loader is used in conjunction with
the paper-tape reader. ’

Manual Utility.- The manual utility is a collection of routines designed
to assist the programmer in loading programs into the 1819A computer and to
assist in debugging these programs. The utility performs the operations of -
loading absolute and relocatable paper tapes, inspecting and changing memory
locations, searching a block of memory for masked data, storing a constant in
a block of memory, moving a block of memory, and punching an absolute-format
paper tape. .

Extended Utility.- The extended utility is the primary utility routine
used by the programmer to enter, operate, and debug programs. This utility
performs more functions than the manual utility and has the added versatility
of operating in a conversational manner from the teletype. The extended
utility performs the functions of inspecting and changing memory locationms,
executing subroutines, executing programs starting at a specified location,
loading absolute and relocatable paper tapes,.punching absolute tapes, out-
putting to the line printer, outputting to the teletype printer, moving a
block of memory, searching a block of memory for masked data, writing into
consecutive memory locations in a specified format, storing a constant in a
block of memory, and tracing a program. This last function provides a listing
of every instruction executed in the program being traced. In additiomn, if
specified, the listing will include the contents of the accumulators and
special registers when the contents change. ‘
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Text Editor.- The text editor is used to edit and create source program
tapes, The editor uses four peripheral devices: a teletype reader, a teletype
printer, a paper-tape reader, and a paper-tape punch. The editing process con-
sists of reading or typing a page of text into a buffer storage area; listing
or printing this text if desired; changing, deleting, or inserting any addi-
tional text from the teletype keyboard; and finally, generating a new source
tape of the edited copy. ’

Assembler.- The assembler accepts a source program expressed symboli-
cally, absolutely, or any combination thereof and converts it into an ordered
set of machine instructions suitable for loading via the utility routines.
The assembler is a 2-pass assembler and requires the use of a paper-tape
reader, a paper-tape punch, and a console typewriter.
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INITIAL SIMULATION RESULTS

A hybrld analog and digital simulation was developed and used to checkout
the hardware, debug the software, and to integrate and evaluate the entire sys-~
tem. The system performance during simulated test flights is documented in
this section.

Longitudinal/Vertical Performance
Data depicting longitudinal/vertical axis performance was obtained by using
the VALT flight system hardware and software in conjunction with the hybrid
simulation. Various disturbances were introduced into the system by commanding

mode and reference changes with the navigation/guidance control panel.

Longitudinal Axis Data.-

Speed Select: Figure 44 shows the system response to a commanded increase
of 2.57 meters per second (5 knots) in the reference velocity. Initial veloc-
ity for the case is 30.9 meters per second (60 knots). System dynamics are
masked slightly by the fact that commanded velocity reference changes are lag-
ged and rate limited prior to being introduced into the control laws. The
effect of this reference smoothing technique is best shown in Figure 45 in
which the aircraft is commanded from a hover to 46.3 metérs per second (90
knots). An initial pitch attitude change of .075 radians is smoothly commanded.
The attitude then increases to compensate for changing trim demands as the air-

craft accelerates at .76 meter per second (2.5 feet per secondz). At no time
does the velocity error (Ve) exceed 1.83 meters per second (6 feet per second).

Automatic Approach: Automatic transition from forward flight to a hover
is shown in Figure 46. The NASA "1.5 degrees'" deceleration profile is used.
This profile approximates a constant attitude deceleration in which the pitch
attitude demanded is 1.5 degrees above the hover trim attitude. The velocity
error during the transition does not exceed .91 meter per second (3 feet per
second) and the transition to the hover control laws does not require any
abrupt pitch attitude changes. The NASA "Concave Downward" altitude profile
was used for this data run.

Vertical Axis Data.-

VVCS: The NASA Vertical Velocity Control System (VVCS) is a high gain
_collective pitch axis inmer loop which has been implemented digitally within
the VALT software. The response of the system, shown in Figure 47, was ob-
tained by inserting a step model attitude change of 1.52 meters (5 feet).
Figure 48 shows the normal VVCS performance when a 2.54 centimeter (1 inch)
step of collective command is applied. This data was taken with a VVCS con-
figuration having a rate model lag time constant of 2 seconds.
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Altitude Select: Vertical axis response to commanded altitude reference
changes is shown in Figure 49. During the first part of the run the altitude
reference is changed from 0O to 305 meters (1000 feet). The 5.18 meters per
second (17 feet per second) vertical velocity limit is achieved within 10 sec-
onds ("g" limiting is used) and is held until the new reference is approached.
During the second part of the trace the altitude reference is switched to zero.
The vertical velocity limit is automatically decreased as the aircraft nears
the ground in the interest of safety and pilot acceptability.

Automatic Approach: Vertical performance during an automatic approach
is shown in Figure 50. The NASA "Concave Downward" altitude profile is used
for this case. This profile approximates a constant vertical speed of 2.44
meters per second (8 feet per second) with an automatic flare to 15.2 meters
(50 feet). The discontinuities in the he and hREF traces are caused by the

altitude error/altitude rate cancelling technique used to assymptotically
transition between various altitude profile segments. The "1.5 degree" decel-
eration profile was used for this data run.

Lateral/Directional Performance
Data depicting lateral/directional axes performance was obtained by using
the VALT flight system hardware and software in conjunction with the hybrid
simulation. Various disturbances were introduced into the system by command-

ing mode and reference changes with the navigation/guidance control panel.

Lateral/Directional Axes Data.-

Heading Select: Heading Select performance for cruise flight velocities
above 20.5 meters per second (40 knots) is shown in Figures 51 and 52, In
Figure 51 the heading reference is changed by 10 degrees, while in Figure 52
the reference is changed by 180 degrees. The effect of bank angle and roll .
rate limiting is readily apparent in these figures. For both of these cases
a velocity of 30.5 meters per second (100 feet per second) was used. The
heading gain is programmed to be directly proportional with velocity to pro-
vide a heading response which'is virtually independent of airspeed. Hover per-
formance for similar reference changes is shown in Figures 53 and 54. The
yaw rate command is both magnitude and rate limited to provide a smooth
response.

Automatic Approach: Crosstrack capture performance for an airspeed of
30.5 meters per second (100 feet per second) with position deviations of 30.5
meters (100 feet) and 305 meters (1000 feet) is shown in Figures 55 and 56 re-
spectively. In the latter case, the effect of a 30 degree cut angle limit is
apparent., Maximum overshoot for this case is approximately 15.2 meters (50
feet). '
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‘ The ability of the VALT system to track a curved path is shown in Figure 57
for an airspeed of 30.5 meters per second . (100 feet per second) and in Figure
58 for an airspeed of 10.4 meters per second (34 feet per second). In the
‘higher speed case, a 180 degree turn is commanded by flying a semicircle of
radius 609.6 meters (2000 feet) connected by straight-line segments at entry
and exit. Crosstrack deviations during the maneuver are less than 13.7 meters
(45 feet). The low-speed case employs a semicircle of radius of 61 meters
(400 feet) and crosstrack error is less than 12.2 meters (40 feet). It should
be noted, that in the low-speed case, crosstrack error is corrected by direct
lateral translation commands. The yaw axis is in a heading mode wh1ch forces
the aircraft heading to be tangential to the path.

Digital Inner Loop Performance.- In addition to the previously described
digital outer loop, provisions have been made to implement the pitch, roll, and
yaw inner loops within the 1819A.

The pitch and roll inner loops yield a second-order attitude response to
.outer loop commands and manual inputs. The undamped natural frequency and
damping ratio of the response model are explicitly available as variables with-
in the inner loop software and can be readily changed. Figure 59 depicts sys-
tem response at a hover to 4-degree step change in commanded pitch attitude.
An inner loop frequency of 1.414 radians per second and damping ratio of .707
were used for this run. The capability to independently vary the model damping
ratio is shown in Figure 60. In this run, 3-degree step commands were applied
for model damping ratios of 1.5, .707, and .25 while the model frequency was
held constant at 1.414 radians per second. Model frequency versatility is
shown in Figure 61. For a constant damping ratio of .707, 4-degree steps were
applied to models of frequency .5, 1.5, and 3 radians per second.

The yaw inner loop yields a first-order response to yaw -rate input com-
mands. In addition, outer loop functions are used to augment aircraft perfor-
mance. At low speeds, heading is automatically held through yaw until the
evaluation pilot depresses either pedal more than .098 centimeter (.25 inch).
The loop then goes into followup, while a yaw rate proportional to pedal de-
flection is commanded. Figure 62 shows the yaw response at a hover to a pedal
step of 2.54 centimeters (1 inch). The first-order yaw rate response is appar-
ent, When the step is removed, the heading reference is.clamped. Heading
overshoot is less than 2 degrees.

At higher speeds automatic turn coordination is provided. The pilot may,
however, force a sideslip by depressing the pedals. Aircraft response to a
2.54 centimeter (1 inch) pedal pulse at an airspeed of 45.7 meters per second
(150 feet per second) is depicted in Figure 63. Figure 64 shows the aircraft
response at the same airspeed to a 10 degree step of bank-angle command.
Sideslip and lateral acceleration excursions are minimal during the maneuver.
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Hover Augmentation System (HAS).- When the pitch and roll inner loops are :
implemented within the 1819A, the pilot may select the HAS mode to further aug-
ment aircraft response and stability. HAS provides short term acceleration and
velocity damping, thus making the aircraft less susceptible to gusts. Figure
65 shows the effect of these feedbacks when a 5 degree step-input command is
applied to the pitch inner loop model in parallel with the HAS. The magnitude
of the step command is shown as the dashed line on the € trace in order to
- emphasize the effect of the HAS feedback. The long-term washout of the HAS
feedback is apparent in the U and 0 traces.

A short-term velocity response to pilot inputs is achieved by various com-
binations of stick position signal shaping., Figure 66 shows aircraft response
to a 2.54 centimeter (1 inch) pilot input using a "1 second" HAS (i.e., a vel-
ocity command system with a 1 second time constant). Figure 67 shows the res-
ponse of the nominal system (2 seconds) described in Figure 10. A four-second
system is shown in Figure 68. By rearranging the stick signal shaping config-
uration slightly, an aircraft response similar to the original inner-loop-only
system may be achieved. The response of such a configuration is shown in
Figure 69.

Lateral Path Performance

A curved path supplied by NASA was used to demonstrate the performance of
the general purpose lateral path program. Twenty two data points were entered
into the computer to set up the desired path. The data points used are given
in Table 8.

Path Plot.~ The path plotting routine (LPPLOT) was used to generate an X-Y
plot of the lateral path in order to verify that the path data was correct and
that the resulting path was continuous. The plotting routine also calculated
the maximum nominal bank angle required to fly each segment of the path and
compared this bank angle with a preset bank angle limit. The maximum bank
angle requirement for this path was 17 degrees and occurred at the end of Seg-
ment 8. The path plot is shown in Figure 70.

Simulated Test Flight.~ The VALT simulation was used in conjunction with
the Digital Interface Unit, Navigation/Guidance Control Panel, 1819A Digital
Computer, and the GSE to fly the lateral path. The resulting flight path is
shown in Figure 71. This path was flown with a 1.5 degree constant attitude
speed profile and a concave downward altitude profile as supplied by NASA.
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TABLE 8
LATERAL PATH DATA

)
09
37
o9
77
37
77
76

37
77
76
37
77
76
og
77

75
37
Py
75
37
(Y
74
37

0@
74
37
1
74
0@
pe
73

o¢
pe
73
37
77
73
37
77

Ul I
P300
7776
P00g
2197
7775
6647
7967

7776
4¢57
4217
7776
2197
9277
l]u11)
4957

4357

7776
po00
P437
7776
372¢
6467
7776

7640
6467
7776
3560
0577
o000
5679
Pp737

@132
1750
27¢7
7776
6647
6007
7776
9757

9

1)
131¢7¢
1)

3000
131079
600
4600

131079
2009
6000

131970
3000
8399

g
2000

10000
131979
1)
12009
131079
2000
13000

131970

4000
13008
131979
6000
16000
¢
3000
20000

99
1000
190¢¢
131070
- 600
17400
131670
3600
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Data taken during the simulated flight is shown in Figure 72. This data
includes actual roll angle, crosstrack error, sine of the actual magnetic head-
ing, actual altitude, and actual velocity. In addition, a segment counter out-
put was recorded to assist in correlating the data with points on the lateral
path, The lateral path and the speed and altitude profiles used brought the
aircraft to a hover with an altitude of 15.2 meters (50 feet). The land mode
was then engaged to demonstrate this function.

The maximum crosstrack error recorded was 22.86 meters (75 feet) and occur-
red at the point on the path where the aircraft bank angle requirements changed
from 17 degrees to O degree as the path changed from a small radius curved seg-
ment to a straight line segment. This point serves as a good illustration of
the problem that can result when a curved section is connected to a straight
line section. The curved section in this case has a radius of curvature at its
end point that requires a 17 degree nominal roll angle at the velocity speci-
fied. This curve is abruptly terminated and followed by a straight line seg-
ment. Consequently, an instantaneous bank angle change of 17 degrees is
‘required. This particular example is further complicated by the fact that the
curved segment was one that had a decreasing radius of curvature. This de-
creasing radius of curvature requires an increasing roll angle as the segment
is traversed, thus causing an adverse roll rate to be in existence at the mo-
ment that the path segment is changed. The path tracking can be improved for
such cases as this, by altering the path slightly to provide for a better
transition between curved and straight line segments:

Path Initialization and Go-Around.- A second simulated flight was made to
illustrate the automatic path initialization and the go-around mode. This
flight path is shown in Figure 73. Upon completion of the flight, the go-

around mode was engaged, with the aircraft in a hover at 50 feet. The preset
go-around conditions used for this flight were 180 degrees for magnetic head-
ing, 500 feet for altitude and 55 knots for speed.

Path Capture Maneuvers.-— The initial path capture maneuvers for three dif-
ferent starting points are shown in Figure 74. For both path one and path two,
the path initialization occurred within the cone capture limits. Path three
shows an initilization outside the cone capture limits.
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Altitude Profile Data

Figure 75 shows the simulated radar-derived altitude versus path distance-
to-go for a concave downward and a constant glideslope angle altitude profile.
The data to define the concave downward profile is given in Table 9. These
profiles were obtained while the simulated aircraft was flying a straight-in
approach. Both of the profiles shown include a flare to a hover at 15.2
meters (50 feet).

Speed Profile Data

Figure 76 shows the simulated radar-derived groundspeed versus path
distance-to-go for three different velocity profiles. These profiles produce
decelerations that require a constant pitch attitude above trim. The profiles
shown are for 1 degree, 1.5 degree, and 2 degree attitudes., The data to define
the 2 degree attitude profile is given in Table 10. All three of the speed
profiles shown were flown in conjunction with a straight-in approach.
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TABLE 9

ALTITUDE PROFILE DATA

6563
6564
6565
6566
6567
657¢
6571
6572

6573
6574
6575
6576
6577
6600
6641
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6603
6604
6605
6606

. 6607

pe
)
)
LY
0¢
LY
o¢
pg

LY
)
90
pg
00
po
90

1)
- 90

)
91
89
22

0330
g@62
0962
062
0454
#226
1346

9327

1440
9411
2032
461
2621
$#536
36@5
g62¢

4766
p7¢7
4431
1356
7721

50
50
5¢

300

150
55@
215

800
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TABLE 10
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41
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.58
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187¢
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160

2350
165
2500
108
2700
11¢
77777



CONCLUDING REMARKS

This section presents a brief summary of the major results of the contract
efforts and some recommendations for increasing the capability of the system.

Results

General Purpose Lateral Path.- A technique was developed, using straight
line and elliptical segments, that can generate randomly shaped, curved paths
and that can provide data necessary to fly such a path. The technique involves
the use of stored data points that define the position and heading which the
aircraft is to have as it traverses the path.

Hardware.- A set of flight system hardware which provides navigation com-
putation and analog, digital, and human interface with the system was developed
and fabricated. The flight system hardware was built around the 1819A Digital
Computer. A set of ground support equipment was also fabricated to facilitate
programming of the 1819A computer and to check out other hardware components.

Software.~ A set of utility programs was created to facilitate the writ-
ing, editing, assembly, and checkout of computer programs for the 1819A. A
flight system program containing a split cycle, real-time, executive routine,
and a series of specialized subroutines was created to implement the control
laws and the navigation geometry calculations. A programming manual was writ-
ten as a guide to system understanding and use.

Software Validation Facility.- An analog computer was interfaced with the
1819A Digital Computer and the other flight system hardware to simulate the
CH-47B aircraft. This hybrid combination was connected to a helicopter cockpit
simulator to provide the capability to verify and improve the system hardware
and software. The validation facility was used to conduct simulated test
flights in order to obtain data on system performance.

Recommendations

The evaluation of the techniques that have been developed during this con-
tract must await the integration of the system into the NASA research aircraft
and the subsequent flight tests. Preliminary evaluation of the system using
the Sperry fixed based simulator, however, shows two areas that should be con-
sidered for further development. '

Lateral Path Technique.- The technique that combines a straight line and
elliptical segments into continuous flight paths results in a path that does
not contain heading discontinuities. However, the junction between an ellipti-
cal segment and a straight line segment generally results in a bank angle dis-
continuity. The curve fitting technique should be expanded to incorporate some
form of transitional curve in addition to the elliptical and straight segments.
Such a transitional curve would provide smoother turn entry and turn exit per-
formance and should reduce crosstrack error at these points.
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Information Display.- Simulated data flights undertaken in the Sperry
fixed base simulation have indicated that it will be necessary to provide more-
situation information to the pilot during curved approaches that incorporate
steep, decelerating descents. Graphical displays that present the computed
flight path in relation to the terminal area surroundings should be considered.
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Figure 29
1819A Control Panel
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Figure 30
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NOTES:
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Figure 34
DIU Logic Section Timing
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Figure 35
Navigation/Guidance Control Panel
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Navigation/Guidance Control Panel Output Section Block Diagram
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Figure 37
Navigation/Guidance Control Panel Input Section Block Diagram
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Figure 38
Transponder Data System Interface Unit
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Figure 39
TIF Uplink Memory Section
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Figure 40
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Figure 41
Ground Support Equipment
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Figure 42
Carry-On Load/Dump Unit
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Figure 43
Front Panel Carry-On Load/Dump Unit
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Commanded Speed Increase
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Commanded Speed Decrease
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Figure 47
VVCS Response to Altitude Change
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Figure 49
Commanded Altitude Change
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Figure 52
Commanded 180 Degree Heading Change
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Figure 60
Variable Inner Loop Damping
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Figure 61
Variable Inner Loop Frequency
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Yaw Inner Loop Response
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Figure 63
Yaw Inner Loop Pedal Command
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Yaw Inner Loop Bank Command
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Figure 65
HAS Response
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Figure 66
HAS 1 Second Velocity Response
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Figure 67
HAS 2 Second Velocity Response
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Figure 68
HAS 4 Second Velocity Response
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Figure 69
HAS With Attitude Response
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Figure 70
Path Plot Using LPPLOT Routine
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Figure 71
Simulated Flight Track
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Simulated Flight Data
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Figure 74
Path Capture
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