73 research outputs found

    Sex ratio and maternal rank in wild spider monkeys: when daughters disperse

    Full text link
    Data from a long-term field study of the spider monkey, Ateles paniscus , in Peru indicate that a strongly female-biased sex ratio exists from birth in this population. Of 46 infants born between July 1981 and June 1986, 12 were male, 32 were female and 2 were of undetermined sex. This effect is consistent between years as well, with more females than males born in each year of the study (Table 1). This bias is driven by the fact that low-ranking females produce daughters almost exclusively, while high-ranking females bias their investment somewhat less strongly towards sons (Table 2). The unusual pattern of female-biased maternal investment observed in this population of Ateles probably occurs for a combination of the following reasons: (1) maternal investment in individual male offspring is somewhat greater than in individual female offspring; (2) males remain with their natal groups, and the sons of high-ranking females are likely to be competitively superior to the sons of low-ranking females; (3) males compete for mates, and only the one or two most dominant males within a community are likely to achieve significant reproductive success. Two possible mechanisms of sex-ratio adjustment and the evidence for each are discussed.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/46880/1/265_2004_Article_BF00302985.pd

    Furthering the Application of Machine Learning to the Prediction of Oceanic Plankton Biomass

    Get PDF
    The Plankton Prediction System (PPS) is a joint project between the Computer Science and Zoology departments of the University of Cape Town. Its purpose is to research and develop machine-learning software capable of predicting the level and distribution of subsurface oceanic chlorophyll, given related data. In so doing the PPS provides marine biologists with valuable information that would otherwise be both time-consuming and expensive to retrieve. The work outlined in this paper furthers earlier research [9] by Fenn, Curtis and Oberholzer and, as well as addressing a few shortcomings, expands upon a number of topics that demanded closer investigation. The following five items were chosen by the 2006 project team as core research areas: 1. The production of a more structured and coherent set of data from which to perform predictions. 2. The effect of various clustering algorithms on depth profile data. 3. The use of a dynamic Bayesian network to incorporate the effect of time on chlorophyll predictions. 4. The use of topic maps as a means to dynamically display the relationship between data. 5. A greater degree of accompanying documentation and modular design. It is best to think of the work outlined in this paper as three stages in a pipeline. The first stage, preprocessing, is responsible for the integration of all the raw data from a number of different sources. After integration, the data is further discretized through a clustering process, which reduces its complexity. The second stage, prediction, is responsible for training a Dynamic Bayesian Network (DBN) with the clustered data produced in the preprocessing stage. Once training is complete, absent sub-surface chlorophyll data is inferred from the resultant network. The final stage in the PPS pipeline concerns itself with the visualization of the results obtained from both the preprocessing and prediction stages. Technologies, such as Topic Maps and hypergraphs are implemented to create a dynamic view of the relationship between data. Moreover, inference results are rendered as colour rasters for viewing within the web-based PPS interface

    Systematic mechanical assessment of consolidants for canvas reinforcement under controlled environment

    Get PDF
    In conservation, adhesives are commonly used for the consolidation of canvases, yet their impact upon the canvas longevity has raised some concerns amongst conservators. As such, this study presents a testing protocol developed to assess the performance of commonly-used adhesives (natural animal glue and synthetic Beva® 371) and a newly developed nanocellulose consolidant, nanofibrillated nanocellulose (CNF). This includes their effect on the visual appearance, consolidation, and response of the mechanical properties of the treated canvases to programmed changes in relative humidity (RH). Scanning electron microscopy (SEM) images of animal glue- and Beva® 371-treated canvases revealed the presence of adhesive and consolidant on and in-between cotton fibres. The consolidants form bridges linking and connecting the cotton fibres and holding them together, whereas the CNF treatment, formed a visible continuous and dense surface coating. None of the treatments induced any discernible colour change. Controlled environment mechanical testing was performed in two ways: by applying a linearly increasing static force at fixed RH (Young’s modulus) and by applying a dynamic force together with a programmed RH cycling between 20 and 80% (RH dependent viscoelastic properties). CNF gave a higher value of Young’s modulus than either of the two commonly-used materials. Measurements at different values of RH (20 and 80%) demonstrated for all the treated canvases that at the lower value (RH 20%) Young’s modulus values were higher than at the higher value (RH 80%). Besides, the dynamic mode showed that the rate of response in all cases was rapid and reversible and that the nanofibrillated cellulose treated sample showed the highest variation in storage (or elastic) modulus measured at the end of RH plateaux (20 and 80% RH). Thus CNF appears to be a promising material given its higher mechanical performance. The protocol developed in this study has enabled us to examine and compare candidate materials for the consolidation of canvases systematically, using testing parameters that remained relevant to the field of canvas conservation

    Sodium Selenide Toxicity Is Mediated by O2-Dependent DNA Breaks

    Get PDF
    Hydrogen selenide is a recurrent metabolite of selenium compounds. However, few experiments studied the direct link between this toxic agent and cell death. To address this question, we first screened a systematic collection of Saccharomyces cerevisiae haploid knockout strains for sensitivity to sodium selenide, a donor for hydrogen selenide (H2Se/HSe−/Se2−). Among the genes whose deletion caused hypresensitivity, homologous recombination and DNA damage checkpoint genes were over-represented, suggesting that DNA double-strand breaks are a dominant cause of hydrogen selenide toxicity. Consistent with this hypothesis, treatment of S. cerevisiae cells with sodium selenide triggered G2/M checkpoint activation and induced in vivo chromosome fragmentation. In vitro, sodium selenide directly induced DNA phosphodiester-bond breaks via an O2-dependent reaction. The reaction was inhibited by mannitol, a hydroxyl radical quencher, but not by superoxide dismutase or catalase, strongly suggesting the involvement of hydroxyl radicals and ruling out participations of superoxide anions or hydrogen peroxide. The •OH signature could indeed be detected by electron spin resonance upon exposure of a solution of sodium selenide to O2. Finally we showed that, in vivo, toxicity strictly depended on the presence of O2. Therefore, by combining genome-wide and biochemical approaches, we demonstrated that, in yeast cells, hydrogen selenide induces toxic DNA breaks through an O2-dependent radical-based mechanism

    Transcriptomic analysis supports similar functional roles for the two thymuses of the tammar wallaby

    Get PDF
    Background: The thymus plays a critical role in the development and maturation of T-cells. Humans have a single thoracic thymus and presence of a second thymus is considered an anomaly. However, many vertebrates have multiple thymuses. The tammar wallaby has two thymuses: a thoracic thymus (typically found in all mammals) and a dominant cervical thymus. Researchers have known about the presence of the two wallaby thymuses since the 1800s, but no genome-wide research has been carried out into possible functional differences between the two thymic tissues. Here, we used pyrosequencing to compare the transcriptomes of a cervical and thoracic thymus from a single 178 day old tammar wallaby.Results: We show that both the tammar thoracic and the cervical thymuses displayed gene expression profiles consistent with roles in T-cell development. Both thymuses expressed genes that mediate distinct phases of T-cells differentiation, including the initial commitment of blood stem cells to the T-lineage, the generation of T-cell receptor diversity and development of thymic epithelial cells. Crucial immune genes, such as chemokines were also present. Comparable patterns of expression of non-coding RNAs were seen. 67 genes differentially expressed between the two thymuses were detected, and the possible significance of these results are discussed.Conclusion: This is the first study comparing the transcriptomes of two thymuses from a single individual. Our finding supports that both thymuses are functionally equivalent and drive T-cell development. These results are an important first step in the understanding of the genetic processes that govern marsupial immunity, and also allow us to begin to trace the evolution of the mammalian immune system

    Essential Domains of Anaplasma phagocytophilum Invasins Utilized to Infect Mammalian Host Cells

    Get PDF
    Anaplasma phagocytophilum causes granulocytic anaplasmosis, an emerging disease of humans and domestic animals. The obligate intracellular bacterium uses its invasins OmpA, Asp14, and AipA to infect myeloid and non-phagocytic cells. Identifying the domains of these proteins that mediate binding and entry, and determining the molecular basis of their interactions with host cell receptors would significantly advance understanding of A. phagocytophilum infection. Here, we identified the OmpA binding domain as residues 59 to 74. Polyclonal antibody generated against a peptide spanning OmpA residues 59 to 74 inhibited A. phagocytophilum infection of host cells and binding to its receptor, sialyl Lewis x (sLex-capped P-selectin glycoprotein ligand 1. Molecular docking analyses predicted that OmpA residues G61 and K64 interact with the two sLex sugars that are important for infection, α2,3-sialic acid and α1,3-fucose. Amino acid substitution analyses demonstrated that K64 was necessary, and G61 was contributory, for recombinant OmpA to bind to host cells and competitively inhibit A. phagocytophilum infection. Adherence of OmpA to RF/6A endothelial cells, which express little to no sLex but express the structurally similar glycan, 6-sulfo-sLex, required α2,3-sialic acid and α1,3-fucose and was antagonized by 6-sulfo-sLex antibody. Binding and uptake of OmpA-coated latex beads by myeloid cells was sensitive to sialidase, fucosidase, and sLex antibody. The Asp14 binding domain was also defined, as antibody specific for residues 113 to 124 inhibited infection. Because OmpA, Asp14, and AipA each contribute to the infection process, it was rationalized that the most effective blocking approach would target all three. An antibody cocktail targeting the OmpA, Asp14, and AipA binding domains neutralized A. phagocytophilumbinding and infection of host cells. This study dissects OmpA-receptor interactions and demonstrates the effectiveness of binding domain-specific antibodies for blocking A. phagocytophilum infection

    Developmental malformation of the corpus callosum: a review of typical callosal development and examples of developmental disorders with callosal involvement

    Get PDF
    This review provides an overview of the involvement of the corpus callosum (CC) in a variety of developmental disorders that are currently defined exclusively by genetics, developmental insult, and/or behavior. I begin with a general review of CC development, connectivity, and function, followed by discussion of the research methods typically utilized to study the callosum. The bulk of the review concentrates on specific developmental disorders, beginning with agenesis of the corpus callosum (AgCC)—the only condition diagnosed exclusively by callosal anatomy. This is followed by a review of several genetic disorders that commonly result in social impairments and/or psychopathology similar to AgCC (neurofibromatosis-1, Turner syndrome, 22q11.2 deletion syndrome, Williams yndrome, and fragile X) and two forms of prenatal injury (premature birth, fetal alcohol syndrome) known to impact callosal development. Finally, I examine callosal involvement in several common developmental disorders defined exclusively by behavioral patterns (developmental language delay, dyslexia, attention-deficit hyperactive disorder, autism spectrum disorders, and Tourette syndrome)

    Targeting Huntington’s disease through histone deacetylases

    Get PDF
    Huntington’s disease (HD) is a debilitating neurodegenerative condition with significant burdens on both patient and healthcare costs. Despite extensive research, treatment options for patients with this condition remain limited. Aberrant post-translational modification (PTM) of proteins is emerging as an important element in the pathogenesis of HD. These PTMs include acetylation, phosphorylation, methylation, sumoylation and ubiquitination. Several families of proteins are involved with the regulation of these PTMs. In this review, I discuss the current evidence linking aberrant PTMs and/or aberrant regulation of the cellular machinery regulating these PTMs to HD pathogenesis. Finally, I discuss the evidence suggesting that pharmacologically targeting one of these protein families the histone deacetylases may be of potential therapeutic benefit in the treatment of HD
    corecore