26 research outputs found

    Environmental pleiotropy and demographic history direct adaptation under antibiotic selection

    Get PDF
    Evolutionary rescue following environmental change requires mutations permitting population growth in the new environment. If change is severe enough to prevent most of the population reproducing, rescue becomes reliant on mutations already present. If change is sustained, the fitness effects in both environments, and how they are associated-termed 'environmental pleiotropy'-may determine which alleles are ultimately favoured. A population's demographic history-its size over time-influences the variation present. Although demographic history is known to affect the probability of evolutionary rescue, how it interacts with environmental pleiotropy during severe and sustained environmental change remains unexplored. Here, we demonstrate how these factors interact during antibiotic resistance evolution, a key example of evolutionary rescue fuelled by pre-existing mutations with pleiotropic fitness effects. We combine published data with novel simulations to characterise environmental pleiotropy and its effects on resistance evolution under different demographic histories. Comparisons among resistance alleles typically revealed no correlation for fitness-i.e., neutral pleiotropy-above and below the sensitive strain's minimum inhibitory concentration. Resistance allele frequency following experimental evolution showed opposing correlations with their fitness effects in the presence and absence of antibiotic. Simulations demonstrated that effects of environmental pleiotropy on allele frequencies depended on demographic history. At the population level, the major influence of environmental pleiotropy was on mean fitness, rather than the probability of evolutionary rescue or diversity. Our work suggests that determining both environmental pleiotropy and demographic history is critical for predicting resistance evolution, and we discuss the practicalities of this during in vivo evolution

    Quantifying the Adaptive Potential of an Antibiotic Resistance Enzyme

    Get PDF
    For a quantitative understanding of the process of adaptation, we need to understand its “raw material,” that is, the frequency and fitness effects of beneficial mutations. At present, most empirical evidence suggests an exponential distribution of fitness effects of beneficial mutations, as predicted for Gumbel-domain distributions by extreme value theory. Here, we study the distribution of mutation effects on cefotaxime (Ctx) resistance and fitness of 48 unique beneficial mutations in the bacterial enzyme TEM-1 β-lactamase, which were obtained by screening the products of random mutagenesis for increased Ctx resistance. Our contributions are threefold. First, based on the frequency of unique mutations among more than 300 sequenced isolates and correcting for mutation bias, we conservatively estimate that the total number of first-step mutations that increase Ctx resistance in this enzyme is 87 [95% CI 75–189], or 3.4% of all 2,583 possible base-pair substitutions. Of the 48 mutations, 10 are synonymous and the majority of the 38 non-synonymous mutations occur in the pocket surrounding the catalytic site. Second, we estimate the effects of the mutations on Ctx resistance by determining survival at various Ctx concentrations, and we derive their fitness effects by modeling reproduction and survival as a branching process. Third, we find that the distribution of both measures follows a Fréchet-type distribution characterized by a broad tail of a few exceptionally fit mutants. Such distributions have fundamental evolutionary implications, including an increased predictability of evolution, and may provide a partial explanation for recent observations of striking parallel evolution of antibiotic resistance

    Beyond the Hypercube:Evolutionary Accessibility of Fitness Landscapes with Realistic Mutational Networks

    Get PDF
    Evolutionary pathways describe trajectories of biological evolution in the space of different variants of organisms (genotypes). The probability of existence and the number of evolutionary pathways that lead from a given genotype to a better-adapted genotype are important measures of accessibility of local fitness optima and the reproducibility of evolution. Both quantities have been studied in simple mathematical models where genotypes are represented as binary sequences of two types of basic units, and the network of permitted mutations between the genotypes is a hypercube graph. However, it is unclear how these results translate to the biologically relevant case in which genotypes are represented by sequences of more than two units, for example four nucleotides (DNA) or 20 amino acids (proteins), and the mutational graph is not the hypercube. Here we investigate accessibility of the best-adapted genotype in the general case of K > 2 units. Using computer generated and experimental fitness landscapes we show that accessibility of the global fitness maximum increases with K and can be much higher than for binary sequences. The increase in accessibility comes from the increase in the number of indirect trajectories exploited by evolution for higher K. As one of the consequences, the fraction of genotypes that are accessible increases by three orders of magnitude when the number of units K increases from 2 to 16 for landscapes of size N ∼ 106 genotypes. This suggests that evolution can follow many different trajectories on such landscapes and the reconstruction of evolutionary pathways from experimental data might be an extremely difficult task

    Fish consumption and risk of stroke, coronary heart disease, and cardiovascular mortality in a Dutch population with low fish intake

    No full text
    Background/objectives: Fish consumption of at least 1 portion/week is related to lower cardiovascular disease (CVD) risk. It is uncertain whether a less frequent intake is also beneficial and whether the type of fish matters. We investigated associations of very low intakes of total, fatty, and lean fish, compared with no fish intake, with 18-year incidences of stroke, coronary heart disease (CHD), and CVD mortality. Methods: Data were used from 34,033 participants, aged 20–70 years, of the EPIC-Netherlands cohort. Baseline (1993–1997) fish consumption was estimated using a food frequency questionnaire. We compared any fish consumption, <1 portion/week (<100 g) and ≥1 portion/week to non-fish consumption. Results: During 18 follow-up years, 753 stroke events, 2134 CHD events, and 540 CVD deaths occurred. Among the fish consumers (~92%) median intakes of total, lean, and fatty fish were 57.9, 32.9, and 10.7 g/week, respectively. Any fish consumption compared with non-consumption was not associated with incidences of stroke, CHD, MI, and CVD mortality. Furthermore, consumption of <1 portion/week of total, fatty, or lean fish was not associated with any CVD outcome, as compared with non-consumption. Consumption of ≥1 portion/week of lean fish (HR: 0.70, 95% CI: 0.57–0.86) and of fatty fish (HR: 0.63, 95% CI: 0.39–1.02) were associated with lower incidence of ischaemic stroke. Conclusions: Baseline fish consumption of <1 portion/week, regardless of the type of fish, was unrelated to incidences of stroke, CHD, and CVD mortality in this Dutch cohort. Consumption of ≥1 portion/week of fatty or of lean fish reduced the incidence of ischaemic stroke
    corecore