108 research outputs found

    Distributions of epistasis in microbes fit predictions from a fitness landscape model.

    Get PDF
    How do the fitness effects of several mutations combine? Despite its simplicity, this question is central to the understanding of multilocus evolution. Epistasis (the interaction between alleles at different loci), especially epistasis for fitness traits such as reproduction and survival, influences evolutionary predictions "almost whenever multilocus genetics matters". Yet very few models have sought to predict epistasis, and none has been empirically tested. Here we show that the distribution of epistasis can be predicted from the distribution of single mutation effects, based on a simple fitness landscape model. We show that this prediction closely matches the empirical measures of epistasis that have been obtained for Escherichia coli and the RNA virus vesicular stomatitis virus. Our results suggest that a simple fitness landscape model may be sufficient to quantitatively capture the complex nature of gene interactions. This model may offer a simple and widely applicable alternative to complex metabolic network models, in particular for making evolutionary predictions

    Proliferation of Ty3/gypsy-like retrotransposons in hybrid sunflower taxa inferred from phylogenetic data

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Long terminal repeat (LTR) retrotransposons are a class of mobile genetic element capable of autonomous transposition via an RNA intermediate. Their large size and proliferative ability make them important contributors to genome size evolution, especially in plants, where they can reach exceptionally high copy numbers and contribute substantially to variation in genome size even among closely related taxa. Using a phylogenetic approach, we characterize dynamics of proliferation events of <it>Ty3/gypsy</it>-like LTR retrotransposons that led to massive genomic expansion in three <it>Helianthus </it>(sunflower) species of ancient hybrid origin. The three hybrid species are independently derived from the same two parental species, offering a unique opportunity to explore patterns of retrotransposon proliferation in light of reticulate evolutionary events in this species group.</p> <p>Results</p> <p>We demonstrate that <it>Ty3/gypsy</it>-like retrotransposons exist as multiple well supported sublineages in both the parental and hybrid derivative species and that the same element sublineage served as the source lineage of proliferation in each hybrid species' genome. This inference is based on patterns of species-specific element numerical abundance within different phylogenetic sublineages as well as through signals of proliferation events present in the distributions of element divergence values. Employing methods to date paralogous sequences within a genome, proliferation events in the hybrid species' genomes are estimated to have occurred approximately 0.5 to 1 million years ago.</p> <p>Conclusion</p> <p>Proliferation of the same retrotransposon major sublineage in each hybrid species indicates that similar dynamics of element derepression and amplification likely occurred in each hybrid taxon during their formation. Temporal estimates of these proliferation events suggest an earlier origin for these hybrid species than previously supposed.</p

    Transposable Elements Are a Major Cause of Somatic Polymorphism in Vitis vinifera L.

    Get PDF
    Through multiple vegetative propagation cycles, clones accumulate mutations in somatic cells that are at the origin of clonal phenotypic diversity in grape. Clonal diversity provided clones such as Cabernet-Sauvignon N°470, Chardonnay N° 548 and Pinot noir N° 777 which all produce wines of superior quality. The economic impact of clonal selection is therefore very high: since approx. 95% of the grapevines produced in French nurseries originate from the French clonal selection. In this study we provide the first broad description of polymorphism in different clones of a single grapevine cultivar, Pinot noir, in the context of vegetative propagation. Genome sequencing was performed using 454 GS-FLX methodology without a priori, in order to identify and quantify for the first time molecular polymorphisms responsible for clonal variability in grapevine. New generation sequencing (NGS) was used to compare a large portion of the genome of three Pinot noir clones selected for their phenotypic differences. Reads obtained with NGS and the sequence of Pinot noir ENTAV-INRA® 115 sequenced by Velasco et al., were aligned on the PN40024 reference sequence. We then searched for molecular polymorphism between clones. Three types of polymorphism (SNPs, Indels, mobile elements) were found but insertion polymorphism generated by mobile elements of many families displayed the highest mutational event with respect to clonal variation. Mobile elements inducing insertion polymorphism in the genome of Pinot noir were identified and classified and a list is presented in this study as potential markers for the study of clonal variation. Among these, the dynamic of four mobile elements with a high polymorphism level were analyzed and insertion polymorphism was confirmed in all the Pinot clones registered in France

    Novel transposable elements from Anopheles gambiae

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Transposable elements (TEs) are DNA sequences, present in the genome of most eukaryotic organisms that hold the key characteristic of being able to mobilize and increase their copy number within chromosomes. These elements are important for eukaryotic genome structure and evolution and lately have been considered as potential drivers for introducing transgenes into pathogen-transmitting insects as a means to control vector-borne diseases. The aim of this work was to catalog the diversity and abundance of TEs within the <it>Anopheles gambiae </it>genome using the PILER tool and to consolidate a database in the form of a hyperlinked spreadsheet containing detailed and readily available information about the TEs present in the genome of <it>An. gambiae</it>.</p> <p>Results</p> <p>Here we present the spreadsheet named AnoTExcel that constitutes a database with detailed information on most of the repetitive elements present in the genome of the mosquito. Despite previous work on this topic, our approach permitted the identification and characterization both of previously described and novel TEs that are further described in detailed.</p> <p>Conclusions</p> <p>Identification and characterization of TEs in a given genome is important as a way to understand the diversity and evolution of the whole set of TEs present in a given species. This work contributes to a better understanding of the landscape of TEs present in the mosquito genome. It also presents a novel platform for the identification, analysis, and characterization of TEs on sequenced genomes.</p

    In Depth Characterization of Repetitive DNA in 23 Plant Genomes Reveals Sources of Genome Size Variation in the Legume Tribe Fabeae

    Get PDF
    The differential accumulation and elimination of repetitive DNA are key drivers of genome size variation in flowering plants, yet there have been few studies which have analysed how different types of repeats in related species contribute to genome size evolution within a phylogenetic context. This question is addressed here by conducting large-scale comparative analysis of repeats in 23 species from four genera of the monophyletic legume tribe Fabeae, representing a 7.6-fold variation in genome size. Phylogenetic analysis and genome size reconstruction revealed that this diversity arose from genome size expansions and contractions in different lineages during the evolution of Fabeae. Employing a combination of low-pass genome sequencing with novel bioinformatic approaches resulted in identification and quantification of repeats making up 55-83% of the investigated genomes. In turn, this enabled an analysis of how each major repeat type contributed to the genome size variation encountered. Differential accumulation of repetitive DNA was found to account for 85% of the genome size differences between the species, and most (57%) of this variation was found to be driven by a single lineage of Ty3/gypsy LTR-retrotransposons, the Ogre elements. Although the amounts of several other lineages of LTR-retrotransposons and the total amount of satellite DNA were also positively correlated with genome size, their contributions to genome size variation were much smaller (up to 6%). Repeat analysis within a phylogenetic framework also revealed profound differences in the extent of sequence conservation between different repeat types across Fabeae. In addition to these findings, the study has provided a proof of concept for the approach combining recent developments in sequencing and bioinformatics to perform comparative analyses of repetitive DNAs in a large number of non-model species without the need to assemble their genomes

    The influence of journal submission guidelines on authors' reporting of statistics and use of open research practices.

    Get PDF
    From January 2014, Psychological Science introduced new submission guidelines that encouraged the use of effect sizes, estimation, and meta-analysis (the "new statistics"), required extra detail of methods, and offered badges for use of open science practices. We investigated the use of these practices in empirical articles published by Psychological Science and, for comparison, by the Journal of Experimental Psychology: General, during the period of January 2013 to December 2015. The use of null hypothesis significance testing (NHST) was extremely high at all times and in both journals. In Psychological Science, the use of confidence intervals increased markedly overall, from 28% of articles in 2013 to 70% in 2015, as did the availability of open data (3 to 39%) and open materials (7 to 31%). The other journal showed smaller or much smaller changes. Our findings suggest that journal-specific submission guidelines may encourage desirable changes in authors' practices

    A design framework and exemplar metrics for FAIRness

    No full text

    The role of resources and technology in mathematics education. Editorial

    No full text
    Technology has long been a theme open for debate within the mathematics education community and has been reflected in the work of ICMI even prior to the first ICME (Lyon, 1969). More recently, information and communication technology (ICT) has played an increasing role in the events organized by ICMI. Debates around ICT have brought to light the fact that other resources and technologies have been introduced over the last 100 years. On the occasion of the 100th anniversary of ICMI a Symposium was held in Rome to celebrate the event . In that Symposium a Working Group was devoted to the issue of resources and technology throughout the history of ICMI ((e.g. paper and pencil, memorisation and calculators, Dienes blocks, mathematical machines, computers, software and digital learning objects etc.). More than twenty researchers from all over the world took part in this WG, carrying their personal experience and informed reviews of the ICMI related literature in this field. In this special issue we have collected several research papers that emphasize, on the one hand, the historical roots of the experimental approach drawing on resources and technologies and on the other hand show the effectiveness of it in mathematics education. In other words, we present an international review of the theme Resources and technology throughout the history of ICMI as an historical base, on the one hand, and as a prompt towards future development, on the other hand. The authors come from all the continents and have expertise on the didactical use of both classical and information and communication technologies
    corecore