120 research outputs found

    The social and scientific values that shape national climate scenarios: a comparison of the Netherlands, Switzerland and the UK

    Get PDF
    This paper seeks to understand why climate information is produced differently from country to country. To do this, we critically examined and compared the social and scientific values that shaped the production of three national climate scenarios in the Netherlands, Switzerland and the UK. A comparative analysis of documentary materials and expert interviews linked to the climate scenarios was performed. Our findings reveal a new typology of use-inspired research in climate science for decision-making: (i) innovators, where the advancement of science is the main objective; (ii) consolidators, where knowledge exchanges and networks are prioritised; and (iii) collaborators, where the needs of users are put first and foremost. These different values over what constitutes ‘good’ science for decision-making are mirrored in the way users were involved in the production process: (i) elicitation, where scientists have privileged decision-making power; (ii) representation, where multiple organisations mediate on behalf of individual users; and (iii) participation, where a multitude of users interact with scientists in an equal partnership. These differences help explain why climate knowledge gains its credibility and legitimacy differently even when the information itself might not be judged as salient and usable. If the push to deliberately co-produce climate knowledge is not sensitive to the national civic epistemology at play in each country, scientist–user interactions may fail to deliver more ‘usable’ climate information

    The Periotest Method: Implant-Supported Framework Precision of Fit Evaluation

    Full text link
    : In this study, the Periotest instrument was used to measure the precision of fit between cast high noble-metal frameworks and the supporting implants in a patient-simulation model. Three framework conditions and three implant-location variables were used to evaluate the rigidity of the assembly as measured by the Periotest method. The framework variables were (1) one-piece castings (OPC); (2) sectioned-soldered inaccurate castings (SSIC); and (3) sectioned-soldered accurate castings (SSAC). The implant-location variables were right anterior (RA), center (C), and left anterior (LA). Materials and Methods : The patient simulation model used consisted of three self-tapping BrÃ…nemark implants in a reasonable arch curvature in bovine bone. Three working casts were fabricated from the patient-simulation model using polyvinyl siloxane and tapered impression copings. From the working casts, three sets of three frameworks were fabricated as OPCs, SSICs, and SSACs using type 3 high noble alloy. The SSICs were fabricated with a quantitative misfit of 101.6 Îœm at the facial surface, between the abutment-to-gold cylinder interface at the C implant location. Periotest value (PTV) measurements were made at the midfacial surface of the frameworks directly above each abutment-to-gold cylinder interface. Three measurements were made for each test condition. The data were analyzed to compare framework condition(s) and implant location(s) using ANOVA and Fisher's Protected Least Significant Difference Comparison Test. Results : The ANOVA showed that significant differences exist between the mean PTV data for framework condition and for implant location (p < .01). Significant differences were shown between the mean PTV data for the SSAC assemblies and the OPC and SSIC assemblies. The SSICs displayed a more positive (+) mean PTV than the OPCs. The OPC assemblies had a more positive mean PTV than the SSAC assemblies. The mean PTV data for the SSAC assemblies had a significantly different PTV (p < .01) than the other two framework condition assemblies. The OPC and the SSIC assemblies had PTVs that were not significantly different. The C implant location was significantly different from the RA and the LA implant locations (p < .01). The RA and the LA implant locations were not significantly different from each other. The C implant location always demonstrated the most positive mean PTV regardless of the framework condition being tested. Conclusions : The Periotest instrument quantified differences in the precision of fit between three framework conditions. The SSAC assemblies were significantly more rigid than the OPC and SSIC assemblies. The OPC and SSIC assemblies' mean PTVs were not significantly different. The mean PTVs for the C implant location and the RA and LA implant locations were significantly different (p < .01). The mean PTVs of the RA and LA implant locations were not significantly different. The implant-location PTVs followed the same rank order for all three framework conditions. The procedures used to fabricate a more precise fit between the framework and the supporting implants is influenced by the skill of the clinician and technician.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/75096/1/j.1532-849X.1996.tb00298.x.pd

    Prognostic impact of multidrug resistance gene expression on the management of breast cancer in the context of adjuvant therapy based on a series of 171 patients

    Get PDF
    Study of the prognostic impact of multidrug resistance gene expression in the management of breast cancer in the context of adjuvant therapy. This study involved 171 patients treated by surgery, adjuvant chemotherapy±radiotherapy±hormonal therapy (mean follow-up: 55 months). We studied the expression of multidrug resistance gene 1 (MDR1), multidrug resistance-associated protein (MRP1), and glutathione-S-transferase P1 (GSTP1) using a standardised, semiquantitative rt–PCR method performed on frozen samples of breast cancer tissue. Patients were classified as presenting low or high levels of expression of these three genes. rt-PCR values were correlated with T stage, N stage, Scarff–Bloom–Richardson (SBR) grade, age and hormonal status. The impact of gene expression levels on 5-year disease-free survival (DFS) and overall survival (OS) was studied by univariate and multivariate Cox analysis. No statistically significant correlation was demonstrated between MDR1, MRP1 and GSTP1 expressions. On univariate analysis, DFS was significantly decreased in a context of low GSTP1 expression (P=0.0005) and high SBR grade (P=0.003), size ⩾5 cm (P=0.038), high T stage (P=0.013), presence of intravascular embolus (P=0.034), and >3 N+ (P=0.05). On multivariate analysis, GSTP1 expression and the presence of ER remained independent prognostic factors for DFS. GSTP1 expression did not affect OS. The levels of MDR1 and MRP1 expression had no significant influence on DFS or OS. GSTP1 expression can be considered to be an independent prognostic factor for DFS in patients receiving adjuvant chemotherapy for breast cancer

    Simulation of the mechanical interlocking capacity of a rough bone implant surface during healing

    Full text link
    Background: When an implant is inserted in the bone the healing process starts to osseointegrate the implant by creating new bone that interlocks with the implant. Biomechanical interlocking capacity is commonly evaluated in in vivo experiments. It would be beneficial to find a numerical method to evaluate the interlocking capacity of different surface structures with bone. In the present study, the theoretical interlocking capacity of three different surfaces after different healing times was evaluated by the means of explicit finite element analysis. Methods: The surface topographies of the three surfaces were measured with interferometry and were used to construct a 3D bone-implant model. The implant was subjected to a displacement until failure of the bone-to-implant interface and the maximum force represents the interlocking capacity. Results: The simulated ratios (test/control) seem to agree with the in vivo ratios of Halldin et al. for longer healing times. However the absolute removal torque values are underestimated and do not reach the biomechanical performance found in the study by Halldin et al. which might be a result of unknown mechanical properties of the interface. Conclusion: Finite element analysis is a promising method that might be used prior to an in vivo study to compare the load bearing capacity of the bone-to-implant interface of two surface topographies at longer healing times

    Myelin Proteomics: Molecular Anatomy of an Insulating Sheath

    Get PDF
    Fast-transmitting vertebrate axons are electrically insulated with multiple layers of nonconductive plasma membrane of glial cell origin, termed myelin. The myelin membrane is dominated by lipids, and its protein composition has historically been viewed to be of very low complexity. In this review, we discuss an updated reference compendium of 342 proteins associated with central nervous system myelin that represents a valuable resource for analyzing myelin biogenesis and white matter homeostasis. Cataloging the myelin proteome has been made possible by technical advances in the separation and mass spectrometric detection of proteins, also referred to as proteomics. This led to the identification of a large number of novel myelin-associated proteins, many of which represent low abundant components involved in catalytic activities, the cytoskeleton, vesicular trafficking, or cell adhesion. By mass spectrometry-based quantification, proteolipid protein and myelin basic protein constitute 17% and 8% of total myelin protein, respectively, suggesting that their abundance was previously overestimated. As the biochemical profile of myelin-associated proteins is highly reproducible, differential proteome analyses can be applied to material isolated from patients or animal models of myelin-related diseases such as multiple sclerosis and leukodystrophies

    Development of three-dimensional tissue engineered bone-oral mucosal composite models

    Get PDF
    Tissue engineering of bone and oral mucosa have been extensively studied independently. The aim of this study was to develop and investigate a novel combination of bone and oral mucosa in a single 3D in vitro composite tissue mimicking the natural structure of alveolar bone with an overlying oral mucosa. Rat osteosarcoma (ROS) cells were seeded into a hydroxyapatite/tri-calcium phosphate scaffold and bone constructs were cultured in a spinner bioreactor for 3 months. An engineered oral mucosa was fabricated by air/liquid interface culture of immortalized OKF6/TERET-2 oral keratinocytes on collagen gel-embedded fibroblasts. EOM was incorporated into the engineered bone using a tissue adhesive and further cultured prior to qualitative and quantitative assessments. Presto Blue assay revealed that ROS cells remained vital throughout the experiment. The histological and scanning electron microscope examinations showed that the cells proliferated and densely populated the scaffold construct. Micro computed tomography (micro-CT) scanning revealed an increase in closed porosity and a decrease in open and total porosity at the end of the culture period. Histological examination of bone-oral mucosa model showed a relatively differentiated parakeratinized epithelium, evenly distributed fibroblasts in the connective tissue layer and widely spread ROS cells within the bone scaffold. The feasibility of fabricating a novel bone-oral mucosa model using cell lines is demonstrated. Generating human ‘normal’ cell-based models with further characterization is required to optimize the model for in vitro and in vivo applications
    • …
    corecore