307 research outputs found

    Vacuum Stability, Perturbativity, and Scalar Singlet Dark Matter

    Get PDF
    We analyze the one-loop vacuum stability and perturbativity bounds on a singlet extension of the Standard Model (SM) scalar sector containing a scalar dark matter candidate. We show that the presence of the singlet-doublet quartic interaction relaxes the vacuum stability lower bound on the SM Higgs mass as a function of the cutoff and lowers the corresponding upper bound based on perturbativity considerations. We also find that vacuum stability requirements may place a lower bound on the singlet dark matter mass for given singlet quartic self coupling, leading to restrictions on the parameter space consistent with the observed relic density. We argue that discovery of a light singlet scalar dark matter particle could provide indirect information on the singlet quartic self-coupling.Comment: 25 pages, 10 figures; v2 - fixed minor typos; v3 - added to text discussions of other references, changed coloring of figures for easier black and white viewin

    Constraints on the braneworld from compact stars

    Get PDF
    According to the braneworld idea, ordinary matter is confined on a three-dimensional space (brane) that is embedded in a higher-dimensional space-time where gravity propagates. In this work, after reviewing the limits coming from general relativity, finiteness of pressure and causality on the brane, we derive observational constraints on the braneworld parameters from the existence of stable compact stars. The analysis is carried out by solving numerically the brane-modified Tolman–Oppenheimer–Volkoff equations, using different representative equations of state to describe matter in the star interior. The cases of normal dense matter, pure quark matter and hybrid matter are considered.info:eu-repo/semantics/publishedVersio

    Conformal Bulk Fields, Dark Energy and Brane Dynamics

    Get PDF
    In the Randall-Sundrum scenario we analyze the dynamics of a spherically symmetric 3-brane when the bulk is filled with matter fields. Considering a global conformal transformation whose factor is the Z2Z_2 symmetric warp we find a new set of exact dynamical solutions for which gravity is bound to the brane. The set corresponds to a certain class of conformal bulk fields. We discuss the geometries which describe the dynamics on the brane of polytropic dark energy.Comment: 12 pages, latex, 2 figures. Talk given by Rui Neves at the Fourth International Conference on Physics Beyond the Standard Model, Beyond the Desert 03, Fundamental Experimental and Theoretical Developments in Particle Physics, Accelerator, Non-Accelerator and Space Approaches, Max Planck Institut f. Kernphysik/MPI Heidelberg, Castle Ringberg, Tegernsee, Germany, 9-14 June 2003. To be published in the Conference Proceedings, Springer-Verlag, Heidelberg, German

    Black-hole dynamics in BHT massive gravity

    Full text link
    Using an exact Vaidya-type null-dust solution, we study the area and entropy laws for dynamical black holes defined by a future outer trapping horizon in (2+1)-dimensional Bergshoeff-Hohm-Townsend (BHT) massive gravity. We consider the theory admitting a degenerate (anti-)de Sitter vacuum and pure BHT gravity. It is shown that, while the area of a black hole decreases by the injection of a null dust with positive energy density in several cases, the Wald-Kodama dynamical entropy always increases.Comment: 7 pages, 1 figur

    Long-lived charged Higgs at LHC as a probe of scalar Dark Matter

    Full text link
    We study inert charged Higgs boson H±H^\pm production and decays at LHC experiments in the context of constrained scalar dark matter model (CSDMM). In the CSDMM the inert doublet and singlet scalar's mass spectrum is predicted from the GUT scale initial conditions via RGE evolution. We compute the cross sections of processes ppH+H,H±Si0pp\to H^+H^-,\, H^\pm S_i^0 at the LHC and show that for light H±H^\pm the first one is dominated by top quark mediated 1-loop diagram with Higgs boson in s-channel. In a significant fraction of the parameter space H±H^\pm are long-lived because their decays to predominantly singlet scalar dark matter (DM) and next-to-lightest (NL) scalar, H±SDM, NLff,H^\pm\to S_{\text{DM, NL}} ff', are suppressed by the small singlet-doublet mixing angle and by the moderate mass difference ΔM=MH+MDM. \Delta M=M_{H^+}-M_{\text{DM}} . The experimentally measurable displaced vertex in H±H^\pm decays to leptons and/or jets and missing energy allows one to discover the H+HH^+H^- signal over the huge W+WW^+W^- background. We propose benchmark points for studies of this scenario at the LHC. If, however, H±H^\pm are short-lived, the subsequent decays SNLSDMffˉS_{\text{NL}}\to S_{\text{DM}} f\bar f necessarily produce additional displaced vertices that allow to reconstruct the full H±H^\pm decay chain.Comment: 15 pages, 5 figure

    Exotic particles below the TeV from low scale flavour theories

    Get PDF
    A flavour gauge theory is observable only if the symmetry is broken at relatively low energies. The intrinsic parity-violation of the fermion representations in a flavour theory describing quark, lepton and higgsino masses and mixings generically requires anomaly cancellation by new fermions. Benchmark supersymmetric flavour models are built and studied to argue that: i) the flavour symmetry breaking should be about three orders of magnitude above the higgsino mass, enough also to efficiently suppress FCNC and CP violations coming from higher-dimensional operators; ii) new fermions with exotic decays into lighter particles are typically required at scales of the order of the higgsino mass.Comment: 19 pages, references added, one comment and one footnote added, results unchange

    Polyglutamine tracts regulate autophagy

    Get PDF
    Expansions of polyglutamine (polyQ) tracts in different proteins cause 9 neurodegenerative conditions, such as Huntington disease and various ataxias. However, many normal mammalian proteins contain shorter polyQ tracts. As these are frequently conserved in multiple species, it is likely that some of these polyQ tracts have important but unknown biological functions. Here we review our recent study showing that the polyQ domain of the deubiquitinase ATXN3/ataxin-3 enables its interaction with BECN1/beclin 1, a key macroautophagy/autophagy initiator. ATXN3 regulates autophagy by deubiquitinating BECN1 and protecting it from proteasomal degradation. Interestingly, expanded polyQ tracts in other polyglutamine disease proteins compete with the shorter ATXN3 polyQ stretch and interfere with the ATXN3-BECN1 interaction. This competition results in decreased BECN1 levels and impaired starvation-induced autophagy, which phenocopies the loss of autophagic function mediated by ATXN3. Our findings describe a new autophagy-protective mechanism that may be altered in multiple neurodegenerative diseases.We are grateful to Wellcome Trust (Principal Research Fellowship to DCR.) (095317/Z/11/Z), Wellcome Trust Strategic Grant to Cambridge Institute for Medical Research (100140/Z/12/Z)), National Institute for Health Research Biomedical Research Center at Addenbrooke's Hospital, Addenbrooke's Charitable Trust and Federation of European Biochemical Societies (FEBS Long-Term Fellowship to A.A.) for funding

    Effective Theory Approach to the Spontaneous Breakdown of Lorentz Invariance

    Get PDF
    We generalize the coset construction of Callan, Coleman, Wess and Zumino to theories in which the Lorentz group is spontaneously broken down to one of its subgroups. This allows us to write down the most general low-energy effective Lagrangian in which Lorentz invariance is non-linearly realized, and to explore the consequences of broken Lorentz symmetry without having to make any assumptions about the mechanism that triggers the breaking. We carry out the construction both in flat space, in which the Lorentz group is a global spacetime symmetry, and in a generally covariant theory, in which the Lorentz group can be treated as a local internal symmetry. As an illustration of this formalism, we construct the most general effective field theory in which the rotation group remains unbroken, and show that the latter is just the Einstein-aether theory.Comment: 45 pages, no figures
    corecore