181 research outputs found

    Effect of platelet lysate on human cells involved in different phases of wound healing

    Get PDF
    Background Platelets are rich in mediators able to positively affect cell activity in wound healing. Aim of this study was to characterize the effect of different concentrations of human pooled allogeneic platelet lysate on human cells involved in the different phases of wound healing (inflammatory phase, angiogenesis, extracellular matrix secretion and epithelialization). Methodology/Principal Findings Platelet lysate effect was studied on endothelial cells, monocytes, fibroblasts and keratinocytes, in terms of viability and proliferation, migration, angiogenesis, tissue repair pathway activation (ERK1/2) and inflammatory response evaluation (NFκB). Results were compared both with basal medium and with a positive control containing serum and growth factors. Platelet lysate induced viability and proliferation at the highest concentrations tested (10% and 20% v/v). Whereas both platelet lysate concentrations increased cell migration, only 20% platelet lysate was able to significantly promote angiogenic activity (p<0.05 vs. control), comparably to the positive control. Both platelet lysate concentrations activated important inflammatory pathways such as ERK1/2 and NFκB with the same early kinetics, whereas the effect was different for later time-points. Conclusion/Significance These data suggest the possibility of using allogeneic platelet lysate as both an alternative to growth factors commonly used for cell culture and as a tool for clinical regenerative application for wound healing

    Satellite detection, long-range transport, and air quality impacts of volcanic sulfur dioxide from the 2014–2015 flood lava eruption at Bárðarbunga (Iceland)

    Get PDF
    The 2014–2015 Bárðarbunga-Veiðivötn fissure eruption at Holuhraun produced about 1.5 km3 of lava, making it the largest eruption in Iceland in more than 200 years. Over the course of the eruption, daily volcanic sulfur dioxide (SO2) emissions exceeded daily SO2 emissions from all anthropogenic sources in Europe in 2010 by at least a factor of 3. We present surface air quality observations from across Northern Europe together with satellite remote sensing data and model simulations of volcanic SO2 for September 2014. We show that volcanic SO2 was transported in the lowermost troposphere over long distances and detected by air quality monitoring stations up to 2750 km away from the source. Using retrievals from the Ozone Monitoring Instrument (OMI) and the Infrared Atmospheric Sounding Interferometer (IASI), we calculate an average daily SO2 mass burden of 99 ± 49 kilotons (kt) of SO2 from OMI and 61 ± 18 kt of SO2 from IASI for September 2014. This volcanic burden is at least a factor of 2 greater than the average SO2 mass burden between 2007 and 2009 due to anthropogenic emissions from the whole of Europe. Combining the observational data with model simulations using the United Kingdom Met Office's Numerical Atmospheric-dispersion Modelling Environment model, we are able to constrain SO2 emission rates to up to 120 kilotons per day (kt/d) during early September 2014, followed by a decrease to 20–60 kt/d between 6 and 22 September 2014, followed by a renewed increase to 60–120 kt/d until the end of September 2014. Based on these fluxes, we estimate that the eruption emitted a total of 2.0 ± 0.6 Tg of SO2 during September 2014, in good agreement with ground-based remote sensing and petrological estimates. Although satellite-derived and model-simulated vertical column densities of SO2 agree well, the model simulations are biased low by up to a factor of 8 when compared to surface observations of volcanic SO2 on 6–7 September 2014 in Ireland. These biases are mainly due to relatively small horizontal and vertical positional errors in the simulations of the volcanic plume occurring over transport distances of thousands of kilometers. Although the volcanic air pollution episodes were transient and lava-dominated volcanic eruptions are sporadic events, the observations suggest that (i) during an eruption, volcanic SO2 measurements should be assimilated for near real-time air quality forecasting and (ii) existing air quality monitoring networks should be retained or extended to monitor SO2 and other volcanic pollutants

    Expression and functional activity of nucleoside transporters in human choroid plexus

    Get PDF
    Abstract Background Human equilibrative nucleoside transporters (hENTs) 1-3 and human concentrative nucleoside transporters (hCNTs) 1-3 in the human choroid plexus (hCP) play a role in the homeostasis of adenosine and other naturally occurring nucleosides in the brain; in addition, hENT1, hENT2 and hCNT3 mediate membrane transport of nucleoside reverse transcriptase inhibitors that could be used to treat HIV infection, 3'-azido-3'-deoxythymidine, 2'3'-dideoxycytidine and 2'3'-dideoxyinosine. This study aimed to explore the expression levels and functional activities of hENTs 1-3 and hCNTs 1-3 in human choroid plexus. Methods Freshly-isolated pieces of lateral ventricle hCP, removed for various clinical reasons during neurosurgery, were obtained under Local Ethics Committee approval. Quantification of mRNAs that encoded hENTs and hCNTs was performed by the hydrolysis probes-based reverse transcription real time-polymerase chain reaction (RT-qPCR); for each gene of interest and for 18 S ribosomal RNA, which was an endogenous control, the efficiency of PCR reaction (E) and the quantification cycle (Cq) were calculated. The uptake of [3H]inosine by the choroid plexus pieces was investigated to explore the functional activity of hENTs and hCNTs in the hCP. Results RT-qPCR revealed that the mRNA encoding the intracellularly located transporter hENT3 was the most abundant, with E-Cq value being only about 40 fold less that the E-Cq value for 18 S ribosomal RNA; mRNAs encoding hENT1, hENT2 and hCNT3 were much less abundant than mRNA for the hENT3, while mRNAs encoding hCNT1 and hCNT2 were of very low abundance and not detectable. Uptake of [3H]inosine by the CP samples was linear and consisted of an Na+-dependent component, which was probably mediated by hCNT3, and Na+-independent component, mediated by hENTs. The latter component was not sensitive to inhibition by S-(4-nitrobenzyl)-6-thioinosine (NBMPR), when used at a concentration of 0.5 μM, a finding that excluded the involvement of hENT1, but it was very substantially inhibited by 10 μM NBMPR, a finding that suggested the involvement of hENT2 in uptake. Conclusion Transcripts for hENT1-3 and hCNT3 were detected in human CP; mRNA for hENT3, an intracellularly located nucleoside transporter, was the most abundant. Human CP took up radiolabelled inosine by both concentrative and equilibrative processes. Concentrative uptake was probably mediated by hCNT3; the equilibrative uptake was mediated only by hENT2. The hENT1 transport activity was absent, which could suggest either that this protein was absent in the CP cells or that it was confined to the basolateral side of the CP epithelium.</p
    corecore