59 research outputs found

    Do on-farm natural, restored, managed and constructed wetlands mitigate agricultural pollution in Great Britain and Ireland?

    Get PDF
    Wetlands in agricultural landscapes offer a number of benefits to the landscape function in which they are set, reducing nutrient runoff, providing additional habitat mosaics and offering various ecosystem services. They require careful planning and maintenance in order to perform their optimum design function over a prolonged period of time. They should be treated as functional units of farm infrastructure rather than fit-and-forget systems. A high priority topic within the Department for Environment, Food and Rural Affairs (DEFRA) water quality programme is the mitigation of pollution from agriculture. This programme was set up to meet the requirements of the European Water Framework Directive (WFD) EU (2000). Nutrient loss from agricultural land has been suggested as a major cause of elevated nutrient concentrations in surface waters in the UK. Nitrogen (N) and phosphorus (P) are of particular concern as an excess of either nutrient can lead to eutrophication of freshwater systems and coastal waters. Agriculture has also been identified as a significant source of suspended sediment (SS) concentrations in UK rivers and agriculturally derived sediment has been identified as a source of increased bed-sediment P concentrations in rivers. High bed sediments loads have other negative impacts, such as clogging river gravels reducing fish spawning. There is considerable evidence in the published and grey literature that wetlands have the ability to remove nutrients and sediment and thus reduce the load on receiving waters. Wetlands have also been reported to perform other ecosystem services, such as reducing floods, supporting biodiversity and sequestering carbon. A policy to promote the conservation, management, restoration or construction of wetlands could help to mitigate the impacts of N, P and SS from agriculture delivering requirements of WFD through Catchment Sensitive Farming following an Ecosystem Approach and Catchment Based Approach promoted by Defra. It could also meet other commitments such as implementing the Ramsar and Biodiversity Conventions to which the UK is a signatory. However, the term wetlands covers a wide range of habitat types and it is important that policy makers are provided with accurate, robust and independently reviewed information on the degree to which different types of wetland perform these services under different circumstances, so that policy can most best targeted. This systematic review assesses the available evidence on the performance of various wetland types on farms to reduce nutrient input and suspended sediments to receiving waters. It provides a defensible evidence base on which to base policy. The studies reviewed cover different input loads and the analysis compares performance of these wetland systems in respect of % reduction efficiency. In England and Wales, Defra, working closely with the Environment Agency and Natural England, has commissioned this systematic review on how effective, and what influences the effectiveness of wetlands at mitigating N, P and SS inputs from agriculture to receiving freshwater in the United Kingdom and Ireland

    Characterization of Geographical and Meteorological Parameters

    Get PDF
    [EN]This chapter is devoted to the introduction of some geographical and meteorological information involved in the numerical modeling of wind fields and solar radiation. First, a brief description of the topographical data given by a Digital Elevation Model and Land Cover databases is provided. In particular, the Information System of Land Cover of Spain (SIOSE) is considered. The study is focused on the roughness length and the displacement height parameters that appear in the logarithmic wind profile, as well as in the albedo related to solar radiation computation. An extended literature review and characterization of both parameters are reported. Next, the concept of atmospheric stability is introduced from the Monin–Obukhov similarity theory to the recent revision of Zilitinkevich of the Neutral and Stable Boundary Layers (SBL). The latter considers the effect of the free-flow static stability and baroclinicity on the turbulent transport of momentum and of the Convective Boundary Layers (CBL), more precisely, the scalars in the boundary layer, as well as the model of turbulent entrainment

    Water security, global change and land–atmosphere feedbacks

    Get PDF
    Understanding the competing pressures on water resources requires detailed knowledge of the future water balance under uncertain environmental change. The need for a robust, scientifically rigorous evidence base for effective policy planning and practice has never been greater. Environmental change includes, but is not limited to, climate change; it also includes land-use and land-cover change, including deforestation for agriculture, and occurs alongside changes in anthropogenic interventions which are used in natural resource management such as the regulation of river flows using dams, which can have impacts which frequently exceed those arising in the natural system. In this paper we examine the role that land-surface models can play in providing a robust scientific basis for making resource management decisions against a background of environmental change. We provide some perspectives on recent developments in modeling in land-surface hydrology. Amongst the range of current land-surface and hydrology models there is a large range of variability, which indicates that the specification and parameterization of several basic processes in the models can be improved. Key areas which require improvement in order to address hydrological applications include: (i) the representation of groundwater in models, particularly at the scales relevant to land surface modelling, (ii) the representation of human interventions such as dams and irrigation in the hydrological system, and (iii) the quantification and communication of uncertainty, (iv) improved understanding of the impact on water resources availability of multiple use through treatment,recycling and return flows (and the balance of consumptive and conservative uses). Through a series of examples, we demonstrate that changes in water use could have important reciprocal impacts on climate over a wide area. The effects of water management decisions on climate feedbacks are only beginning to be investigated – they are still only rarely included in climate impact assessments – and the links between the hydrological system and climate are rarely acknowledged in studies of ecosystem services. Nevertheless, because water is essential not only for its direct uses but also for the indirect functions that it serves (including food production, fisheries,and industry), it is vital that these connected systems are studied. Building on the examples above, we highlight recent research showing that assessment of these trade-offs is particularly complex in wetland areas, especially in situations where these trade-offs play to the advantage of different communities
    • …
    corecore