626 research outputs found

    Holographic non-perturbative corrections to gauge couplings

    Get PDF
    We give a direct microscopic derivation of the F-theory background that corresponds to four D7 branes of type I' theory by taking into account the D-instanton contributions to the emission of the axio-dilaton field in the directions transverse to the D7's. The couplings of the axio-dilaton to the D-instanton moduli modify its classical source terms which are shown to be proportional to the elements of the D7 brane chiral ring. Solving the bulk field equations with the non-perturbatively corrected sources yields the full F-theory background. This solution represents the gravitational dual of the four-dimensional theory living on a probe D3 brane of type I', namely of the N=2, Sp(1) SYM theory with Nf=4. Our results provide an explicit microscopic derivation of the non-perturbative gravitational dual of this theory. They also explain the recent observation that the exact coupling for this theory can be entirely reconstructed from its perturbative part plus the knowledge of the chiral ring on the D7 branes supporting its flavor degrees of freedom.Comment: Latex, 39 pages, 6 figure

    The influence of feeding behaviour and temperature on the capacity of mosquitoes to transmit malaria

    Get PDF
    Insecticide-treated bed nets reduce malaria transmission by limiting contact between mosquito vectors and human hosts when mosquitoes feed during the night. However, malaria vectors can also feed in the early evening and in the morning when people are not protected. Here, we explored how the timing of blood feeding interacts with environmental temperature to influence the capacity of Anopheles mosquitoes to transmit the human malaria parasite Plasmodium falciparum. In laboratory experiments, we found no effect of biting time itself on the proportion of mosquitoes that became infectious (vector competence) at constant temperature. However, when mosquitoes were maintained under more realistic fluctuating temperatures, there was a significant increase in competence for mosquitoes feeding in the evening (18:00), and a significant reduction in competence for those feeding in the morning (06:00), relative to those feeding at midnight (00:00). These effects appear to be due to thermal sensitivity of malaria parasites during the initial stages of parasite development within the mosquito, and the fact that mosquitoes feeding in the evening experience cooling temperatures during the night, whereas mosquitoes feeding in the morning quickly experience warming temperatures that are inhibitory to parasite establishment. A transmission dynamics model illustrates that such differences in competence could have important implications for malaria prevalence, the extent of transmission that persists in the presence of bed nets, and the epidemiological impact of behavioural resistance. These results indicate that the interaction of temperature and feeding behaviour could be a major ecological determinant of the vectorial capacity of malaria mosquitoes

    Stringy instanton corrections to N=2 gauge couplings

    Full text link
    We discuss a string model where a conformal four-dimensional N=2 gauge theory receives corrections to its gauge kinetic functions from "stringy" instantons. These contributions are explicitly evaluated by exploiting the localization properties of the integral over the stringy instanton moduli space. The model we consider corresponds to a setup with D7/D3-branes in type I' theory compactified on T4/Z2 x T2, and possesses a perturbatively computable heterotic dual. In the heteoric side the corrections to the quadratic gauge couplings are provided by a 1-loop threshold computation and, under the duality map, match precisely the first few stringy instanton effects in the type I' setup. This agreement represents a very non-trivial test of our approach to the exotic instanton calculus.Comment: 63 pages, 5 figures. V2: final version with minor corrections published on JHEP05(2010)10

    The grinch who stole wisdom

    Get PDF
    Dr. Seuss is wise. How the Grinch Stole Christmas (Seuss, 1957) could serve as a parable for our time. It can also be seen as a roadmap for the development of contemplative wisdom. The abiding popularity of How the Grinch Stole Christmas additionally suggests that contemplative wisdom is more readily available to ordinary people, even children, than is normally thought. This matters because from the point of view of contemplatives in any of the world's philosophies or religions, people are confused about wisdom. The content of the nascent field of wisdom studies, they might say, is largely not wisdom at all but rather what it's like to live in a particular kind of prison cell, a well appointed cell perhaps, but not a place that makes possible either personal satisfaction or deep problem solving. I believe that what the contemplative traditions have to say is important; they offer a different orientation to what personal wisdom is, how to develop it, and how to use it in the world than is presently contained in either our popular culture or our sciences. In order to illustrate this I will examine, in some detail, one contemplative path within Buddhism. Buddhism is particularly useful in this respect because its practices are nontheistic and thus avoid many of the cultural landmines associated with the contemplative aspects of Western religions

    MiniBooNE and LSND data: non-standard neutrino interactions in a (3+1) scheme versus (3+2) oscillations

    Full text link
    The recently observed event excess in MiniBooNE anti-neutrino data is in agreement with the LSND evidence for electron anti-neutrino appearance. We propose an explanation of these data in terms of a (3+1) scheme with a sterile neutrino including non-standard neutrino interactions (NSI) at neutrino production and detection. The interference between oscillations and NSI provides a source for CP violation which we use to reconcile different results from neutrino and anti-neutrino data. Our best fit results imply NSI at the level of a few percent relative to the standard weak interaction, in agreement with current bounds. We compare the quality of the NSI fit to the one obtained within the (3+1) and (3+2) pure oscillation frameworks. We also briefly comment on using NSI (in an effective two-flavour framework) to address a possible difference in neutrino and anti-neutrino results from the MINOS experiment.Comment: 28 pages, 9 figures, discussion improved, new appendix added, conclusions unchange

    New physics searches at near detectors of neutrino oscillation experiments

    Full text link
    We systematically investigate the prospects of testing new physics with tau sensitive near detectors at neutrino oscillation facilities. For neutrino beams from pion decay, from the decay of radiative ions, as well as from the decays of muons in a storage ring at a neutrino factory, we discuss which effective operators can lead to new physics effects. Furthermore, we discuss the present bounds on such operators set by other experimental data currently available. For operators with two leptons and two quarks we present the first complete analysis including all relevant operators simultaneously and performing a Markov Chain Monte Carlo fit to the data. We find that these effects can induce tau neutrino appearance probabilities as large as O(10^{-4}), which are within reach of forthcoming experiments. We highlight to which kind of new physics a tau sensitive near detector would be most sensitive.Comment: 20 pages, 2 figures, REVTeX

    Non-standard interactions versus non-unitary lepton flavor mixing at a neutrino factory

    Full text link
    The impact of heavy mediators on neutrino oscillations is typically described by non-standard four-fermion interactions (NSIs) or non-unitarity (NU). We focus on leptonic dimension-six effective operators which do not produce charged lepton flavor violation. These operators lead to particular correlations among neutrino production, propagation, and detection non-standard effects. We point out that these NSIs and NU phenomenologically lead, in fact, to very similar effects for a neutrino factory, for completely different fundamental reasons. We discuss how the parameters and probabilities are related in this case, and compare the sensitivities. We demonstrate that the NSIs and NU can, in principle, be distinguished for large enough effects at the example of non-standard effects in the μ\mu-τ\tau-sector, which basically corresponds to differentiating between scalars and fermions as heavy mediators as leading order effect. However, we find that a near detector at superbeams could provide very synergistic information, since the correlation between source and matter NSIs is broken for hadronic neutrino production, while NU is a fundamental effect present at any experiment.Comment: 32 pages, 5 figures. Final version published in JHEP. v3: Typo in Eq. (27) correcte

    Gene Expression Patterns of Oxidative Phosphorylation Complex I Subunits Are Organized in Clusters

    Get PDF
    After the radiation of eukaryotes, the NUO operon, controlling the transcription of the NADH dehydrogenase complex of the oxidative phosphorylation system (OXPHOS complex I), was broken down and genes encoding this protein complex were dispersed across the nuclear genome. Seven genes, however, were retained in the genome of the mitochondrion, the ancient symbiote of eukaryotes. This division, in combination with the three-fold increase in subunit number from bacteria (N = ∼14) to man (N = 45), renders the transcription regulation of OXPHOS complex I a challenge. Recently bioinformatics analysis of the promoter regions of all OXPHOS genes in mammals supported patterns of co-regulation, suggesting that natural selection favored a mechanism facilitating the transcriptional regulatory control of genes encoding subunits of these large protein complexes. Here, using real time PCR of mitochondrial (mtDNA)- and nuclear DNA (nDNA)-encoded transcripts in a panel of 13 different human tissues, we show that the expression pattern of OXPHOS complex I genes is regulated in several clusters. Firstly, all mtDNA-encoded complex I subunits (N = 7) share a similar expression pattern, distinct from all tested nDNA-encoded subunits (N = 10). Secondly, two sub-clusters of nDNA-encoded transcripts with significantly different expression patterns were observed. Thirdly, the expression patterns of two nDNA-encoded genes, NDUFA4 and NDUFA5, notably diverged from the rest of the nDNA-encoded subunits, suggesting a certain degree of tissue specificity. Finally, the expression pattern of the mtDNA-encoded ND4L gene diverged from the rest of the tested mtDNA-encoded transcripts that are regulated by the same promoter, consistent with post-transcriptional regulation. These findings suggest, for the first time, that the regulation of complex I subunits expression in humans is complex rather than reflecting global co-regulation

    R-parity violation in SU(5)

    Get PDF
    We show that judiciously chosen R-parity violating terms in the minimal renormalizable supersymmetric SU(5) are able to correct all the phenomenologically wrong mass relations between down quarks and charged leptons. The model can accommodate neutrino masses as well. One of the most striking consequences is a large mixing between the electron and the Higgsino. We show that this can still be in accord with data in some regions of the parameter space and possibly falsified in future experiments.Comment: 30 pages, 1 figure. Revised version. To appear in JHE

    Modulation of enhancer looping and differential gene targeting by Epstein-Barr virus transcription factors directs cellular reprogramming

    Get PDF
    Epstein-Barr virus (EBV) epigenetically reprogrammes B-lymphocytes to drive immortalization and facilitate viral persistence. Host-cell transcription is perturbed principally through the actions of EBV EBNA 2, 3A, 3B and 3C, with cellular genes deregulated by specific combinations of these EBNAs through unknown mechanisms. Comparing human genome binding by these viral transcription factors, we discovered that 25% of binding sites were shared by EBNA 2 and the EBNA 3s and were located predominantly in enhancers. Moreover, 80% of potential EBNA 3A, 3B or 3C target genes were also targeted by EBNA 2, implicating extensive interplay between EBNA 2 and 3 proteins in cellular reprogramming. Investigating shared enhancer sites neighbouring two new targets (WEE1 and CTBP2) we discovered that EBNA 3 proteins repress transcription by modulating enhancer-promoter loop formation to establish repressive chromatin hubs or prevent assembly of active hubs. Re-ChIP analysis revealed that EBNA 2 and 3 proteins do not bind simultaneously at shared sites but compete for binding thereby modulating enhancer-promoter interactions. At an EBNA 3-only intergenic enhancer site between ADAM28 and ADAMDEC1 EBNA 3C was also able to independently direct epigenetic repression of both genes through enhancer-promoter looping. Significantly, studying shared or unique EBNA 3 binding sites at WEE1, CTBP2, ITGAL (LFA-1 alpha chain), BCL2L11 (Bim) and the ADAMs, we also discovered that different sets of EBNA 3 proteins bind regulatory elements in a gene and cell-type specific manner. Binding profiles correlated with the effects of individual EBNA 3 proteins on the expression of these genes, providing a molecular basis for the targeting of different sets of cellular genes by the EBNA 3s. Our results therefore highlight the influence of the genomic and cellular context in determining the specificity of gene deregulation by EBV and provide a paradigm for host-cell reprogramming through modulation of enhancer-promoter interactions by viral transcription factors
    corecore