60 research outputs found

    Host-Associated Bacteriophage Isolation and Preparation for Viral Metagenomics.

    Get PDF
    Prokaryotic viruses, or bacteriophages, are viruses that infect bacteria and archaea. These viruses have been known to associate with host systems for decades, yet only recently have their influence on the regulation of host-associated bacteria been appreciated. These studies have been conducted in many host systems, from the base of animal life in the Cnidarian phylum to mammals. These prokaryotic viruses are useful for regulating the number of bacteria in a host ecosystem and for regulating the strains of bacteria useful for the microbiome. These viruses are likely selected by the host to maintain bacterial populations. Viral metagenomics allows researchers to profile the communities of viruses associating with animal hosts, and importantly helps to determine the functional role these viruses play. Further, viral metagenomics show the sphere of viral involvement in gene flow and gene shuffling in an ever-changing host environment. The influence of prokaryotic viruses could, therefore, have a clear impact on host health

    Educational paper: Abusive Head Trauma Part I. Clinical aspects

    Get PDF
    Abusive Head Trauma (AHT) refers to the combination of findings formerly described as shaken baby syndrome. Although these findings can be caused by shaking, it has become clear that in many cases there may have been impact trauma as well. Therefore a less specific term has been adopted by the American Academy of Pediatrics. AHT is a relatively common cause of childhood neurotrauma with an estimated incidence of 14–40 cases per 100,000 children under the age of 1 year. About 15–23% of these children die within hours or days after the incident. Studies among AHT survivors demonstrate that approximately one-third of the children are severely disabled, one-third of them are moderately disabled and one-third have no or only mild symptoms. Other publications suggest that neurological problems can occur after a symptom-free interval and that half of these children have IQs below the 10th percentile. Clinical findings are depending on the definitions used, but AHT should be considered in all children with neurological signs and symptoms especially if no or only mild trauma is described. Subdural haematomas are the most reported finding. The only feature that has been identified discriminating AHT from accidental injury is apnoea. Conclusion: AHT should be approached with a structured approach, as in any other (potentially lethal) disease. The clinician can only establish this diagnosis if he/she has knowledge of the signs and symptoms of AHT, risk factors, the differential diagnosis and which additional investigations to perform, the more so since parents seldom will describe the true state of affairs spontaneously

    Minimum information about an uncultivated virus genome (MIUVIG)

    Get PDF
    This is the final version. Available on open access from Nature Research via the DOI in this recordNOTE: the full list of funders and grants is in the acknowledgements section of the articleWe present an extension of the Minimum Information about any (x) Sequence (MIxS) standard for reporting sequences of uncultivated virus genomes. Minimum Information about an Uncultivated Virus Genome (MIUViG) standards were developed within the Genomic Standards Consortium framework and include virus origin, genome quality, genome annotation, taxonomic classification, biogeographic distribution and in silico host prediction. Community-wide adoption of MIUViG standards, which complement the Minimum Information about a Single Amplified Genome (MISAG) and Metagenome-Assembled Genome (MIMAG) standards for uncultivated bacteria and archaea, will improve the reporting of uncultivated virus genomes in public databases. In turn, this should enable more robust comparative studies and a systematic exploration of the global virosphere.Simons Foundation InternationalNatural Environment Research Council (NERC

    Comparative (Meta)genomic Analysis and Ecological Profiling of Human Gut-Specific Bacteriophage φB124-14

    Get PDF
    Bacteriophage associated with the human gut microbiome are likely to have an important impact on community structure and function, and provide a wealth of biotechnological opportunities. Despite this, knowledge of the ecology and composition of bacteriophage in the gut bacterial community remains poor, with few well characterized gut-associated phage genomes currently available. Here we describe the identification and in-depth (meta)genomic, proteomic, and ecological analysis of a human gut-specific bacteriophage (designated φB124-14). In doing so we illuminate a fraction of the biological dark matter extant in this ecosystem and its surrounding eco-genomic landscape, identifying a novel and uncharted bacteriophage gene-space in this community. φB124-14 infects only a subset of closely related gut-associated Bacteroides fragilis strains, and the circular genome encodes functions previously found to be rare in viral genomes and human gut viral metagenome sequences, including those which potentially confer advantages upon phage and/or host bacteria. Comparative genomic analyses revealed φB124-14 is most closely related to φB40-8, the only other publically available Bacteroides sp. phage genome, whilst comparative metagenomic analysis of both phage failed to identify any homologous sequences in 136 non-human gut metagenomic datasets searched, supporting the human gut-specific nature of this phage. Moreover, a potential geographic variation in the carriage of these and related phage was revealed by analysis of their distribution and prevalence within 151 human gut microbiomes and viromes from Europe, America and Japan. Finally, ecological profiling of φB124-14 and φB40-8, using both gene-centric alignment-driven phylogenetic analyses, as well as alignment-free gene-independent approaches was undertaken. This not only verified the human gut-specific nature of both phage, but also indicated that these phage populate a distinct and unexplored ecological landscape within the human gut microbiome

    Functional time limit and onset of symptoms in infant abusive head trauma

    No full text
    Aim: To analyse medical and witness evidence collected during investigations of infant abusive head trauma with a view to (i) isolating cases where a functional time limit could be established and (ii) examining those cases for evidence of the onset of neurological symptoms. Methods: A retrospective study was undertaken of severe infant abusive head trauma cases investigated by the Queensland Police Service over a 10-year period. In cases where sufficient reliable (non-perpetrator) evidence was available, a functional time limit was documented. Those files were then examined for further medical, witness or perpetrator evidence of the infant victim's response to the assault. Results: A functional time limit was established in 16 of 52 cases (31%). In 11 of the 16 cases there was evidence of an immediate neurological response on the part of the victim. Conclusion: The study suggests that the period between assault and onset of symptoms in infant abusive head trauma is brief, particularly in cases of an acute deterioration where proximate medical intervention is required. In those cases with sufficient evidence of the victim's condition post-injury, the symptoms presented without delay.</p

    From whole-genome shotgun sequencing to viral community profiling: The viromescan tool

    No full text
    ViromeScan is an innovative metagenomic analysis tool that allows the viral community characterization in terms of taxonomy from raw data of metagenomics sequencing. It efficiently denoises samples from reads of other microorganisms. Users can adopt the same shotgun metagenomic sequencing data to fully characterize complex microbial ecosystems, including bacteria and viruses. Here we apply ViromeScan pipeline to some examples, thus illustrating the processes computed from raw data to the final output
    • …
    corecore