4,073 research outputs found

    Plastic deformation of metallic glasses: Size of shear transformation zones from molecular dynamics simulations

    Get PDF
    Plastic deformation in metallic glasses well below their glass transition temperatures Tg occurs spatially heterogeneously within highly localized regions, termed shear transformation zones (STZs). Yet, their size and the number of atoms involved in a local shear event, remains greatly unclear. With the help of classical molecular dynamics (MD) computer simulations on plastic deformation of the model glass CuTi during pure shearing, we address this issue by evaluating correlations in atomic-scale plastic displacements, viz. the displacement correlation function. From the correlation length, a universal diameter of about 15 Ã…, or, equivalently, approximately 120 atoms is derived for a variety of conditions, such as variable strains, strain rates, temperatures, and boundary conditions. Our findings are consistent with a recent model proposed by Johnson and Samwer [Phys. Rev. Lett. 95, 195501 (2005)]

    Amorphous thin film growth: theory compared with experiment

    Full text link
    Experimental results on amorphous ZrAlCu thin film growth and the dynamics of the surface morphology as predicted from a minimal nonlinear stochastic deposition equation are analysed and compared. Key points of this study are (i) an estimation procedure for coefficients entering into the growth equation and (ii) a detailed analysis and interpretation of the time evolution of the correlation length and the surface roughness. The results corroborate the usefulness of the deposition equation as a tool for studying amorphous growth processes.Comment: 7 pages including 5 figure

    Correlation between magnetic and transport properties of phase separated La0.5_{0.5}Ca0.5_{0.5}MnO3_{3}

    Full text link
    The effect of low magnetic fields on the magnetic and electrical transport properties of polycrystalline samples of the phase separated compound La0.5_{0.5}Ca0.5_{0.5}MnO3_{3} is studied. The results are interpreted in the framework of the field induced ferromagnetic fraction enlargement mechanism. A fraction expansion coefficient af, which relates the ferromagnetic fraction f with the applied field H, was obtained. A phenomenological model to understand the enlargement mechanism is worked out.Comment: 3 pages, 3 figures, presented at the Fifth LAW-MMM, to appear in Physica B, Minor change

    A theoretical model of the ionosphere dynamics with interhemispheric coupling

    Get PDF
    Dynamic model for ionospheric plasma with interhemispheric couplin

    Middle Atmosphere Dynamics with Gravity Wave Interactions in the Numerical Spectral Model: Tides and Planetary Waves

    Get PDF
    As Lindzen (1981) had shown, small-scale gravity waves (GW) produce the observed reversals of the zonal-mean circulation and temperature variations in the upper mesosphere. The waves also play a major role in modulating and amplifying the diurnal tides (DT) (e.g., Waltersheid, 1981; Fritts and Vincent, 1987; Fritts, 1995a). We summarize here the modeling studies with the mechanistic numerical spectral model (NSM) with Doppler spread parameterization for GW (Hines, 1997a, b), which describes in the middle atmosphere: (a) migrating and non-migrating DT, (b) planetary waves (PW), and (c) global-scale inertio gravity waves. Numerical experiments are discussed that illuminate the influence of GW filtering and nonlinear interactions between DT, PW, and zonal mean variations. Keywords: Theoretical modeling, Middle atmosphere dynamics, Gravity wave interactions, Migrating and non-migrating tides, Planetary waves, Global-scale inertio gravity waves

    Modeling the Observed Solar Cycle Variations of the Quasi-biennial Oscillation (QBO): Amplification by Wave Forcing

    Get PDF
    In several papers, the solar cycle (SC) effect in the lower atmosphere has been linked observationally to the Quasi-biennial Oscillation (QBO) of the zonal circulation, which is generated primarily by small-scale gravity waves (GW). Salby and Callaghan (2000) in particular analyzed the QBO, covering more than 40 years, and discovered that it contains a large SC signature at 20 km. With our Numerical Spectral Model (NSM), we conducted a 3D study to describe the QBO under the influence of the SC, and some results have been published (Mayr et al., GRL, 2005,2006). For a SC period of 10 years, the relative amplitude of radiative forcing is taken to vary exponentially with height, i.e., 0.2% at the surface, 2% at 50 km, 20% at 100 km and above. Applying spectral analysis to filter out and identify the SC signature, the model generates a relatively large modulation of the QBO, which reproduces the observations qualitatively. Our numerical results demonstrate that the modulation of the QBO, with constant phase relative to the SC, persist at least for 60 years. The same model run generates in the seasonal variations a hemispherically symmetric Equatorial Annual Oscillation (EAO, with 12-month period), which is confined to low latitudes like the QBO and is also modulated by the SC. Although the amplitude of the EAO is relatively small, its SC modulation is large, and it is in phase with that of the QBO. The SC modulated EAO is evidently the pathway and pacemaker for the solar influence on the QBO. To shed light on the dynamical processes involved, we present model results that show how the seasonal cycle induces the SC modulations of the EAO and QBO. Our analysis further demonstrates that the SC modulations of the QBO and EAO are amplified by the GW interaction with the flow. The GW momentum source clearly shows a SC modulation that is in phase with the corresponding modulations of the QBO and EAO. By tapping the momentum from the upward propagating GWs, the QBO and EAO apparently serve as conduits to amplify and transfer to lower altitudes the larger SC variations in the UV absorbed in the mesosphere. Our model also produces in the temperature variations of the QBO and EAO measurable SC modulations at polar latitudes near the tropopause, and such signatures have been reported in the literature. Contrary to conventional interpretation, however, we suggest that the effects are generated at least in part by the meridional circulation, and planetary waves presumably, which redistribute the energy from the equatorial region where wave forcing is very efficient and thereby amplifies the SC influence

    The QBO as potential amplifier and conduit to lower altitudes of solar cycle influence

    No full text
    International audienceIn several papers, the solar cycle (SC) effect in the lower atmosphere has been linked observationally to the Quasi-biennial Oscillation (QBO) of the zonal circulation. Salby and Callaghan (2000) in particular analyzed the QBO wind measurements, covering more than 40 years, and discovered that they contain a large SC signature at 20 km. We present here the results from a study with our 3-D Numerical Spectral Model (NSM), which relies primarily on parameterized gravity waves (GW) to describe the QBO. In our model, the period of the SC is taken to be 10 years, and the relative amplitude of radiative forcing varies exponentially with height, i.e., 0.2% at the surface, 2% at 50 km, and 20% at 100 km and above. Applying spectral analysis to identify the SC signature, the model generates a relatively large modulation of the QBO, which reproduces the observations qualitatively. The numerical results demonstrate that the QBO modulation, closely tracking the phase of the SC, is robust and persists at least for 70 years. The question is what causes the SC effect, and our analysis shows that four interlocking processes are involved: (1) In the mesosphere at around 60 km, the solar UV variations generate in the zonal winds a SC modulation of the 12-month annual oscillation, which is hemispherically symmetric and confined to equatorial latitudes like the QBO. (2) Although the amplitude of this equatorial annual oscillation (EAO) is relatively small, its SC modulation is large and extends into the lower stratosphere under the influence of, and amplified by, wave forcing. (3) The amplitude modulations of both EAO and QBO are essentially in phase with the imposed SC heating for the entire time span of the model simulation. This indicates that, due to positive feedback in the wave mechanism, the EAO apparently provides the pathway and pacemaker for the SC modulation of the QBO. (4) Our analysis demonstrates that the SC modulations of the QBO and EAO are amplified by tapping the momentum from the upward propagating gravity waves. Influenced and amplified by wave processes, the QBO thus acts as conduit to transfer to lower altitudes the larger SC variations in the UV absorbed in the mesosphere. Our model produces in the temperature variations of the QBO and EAO measurable SC modulations at polar latitudes near the tropopause. The effects are apparently generated by the meridional circulation, and planetary waves presumably, which redistribute the energy from the equatorial region where the waves are very effective in amplifying the SC influence

    Reconfiguration of Dominating Sets

    Full text link
    We explore a reconfiguration version of the dominating set problem, where a dominating set in a graph GG is a set SS of vertices such that each vertex is either in SS or has a neighbour in SS. In a reconfiguration problem, the goal is to determine whether there exists a sequence of feasible solutions connecting given feasible solutions ss and tt such that each pair of consecutive solutions is adjacent according to a specified adjacency relation. Two dominating sets are adjacent if one can be formed from the other by the addition or deletion of a single vertex. For various values of kk, we consider properties of Dk(G)D_k(G), the graph consisting of a vertex for each dominating set of size at most kk and edges specified by the adjacency relation. Addressing an open question posed by Haas and Seyffarth, we demonstrate that DΓ(G)+1(G)D_{\Gamma(G)+1}(G) is not necessarily connected, for Γ(G)\Gamma(G) the maximum cardinality of a minimal dominating set in GG. The result holds even when graphs are constrained to be planar, of bounded tree-width, or bb-partite for b≥3b \ge 3. Moreover, we construct an infinite family of graphs such that Dγ(G)+1(G)D_{\gamma(G)+1}(G) has exponential diameter, for γ(G)\gamma(G) the minimum size of a dominating set. On the positive side, we show that Dn−m(G)D_{n-m}(G) is connected and of linear diameter for any graph GG on nn vertices having at least m+1m+1 independent edges.Comment: 12 pages, 4 figure

    Compactification with Flux on K3 and Tori

    Get PDF
    We study compactifications of Type IIB string theory on a K3 \times T^2/Z_2 orientifold in the presence of RR and NS flux. We find the most general supersymmetry preserving, Poincare invariant, vacua in this model. All the complex structure moduli and some of the Kahler moduli are stabilised in these vacua. We obtain in an explicit fashion the restrictions imposed by supersymmetry on the flux, and the values of the fixed moduli. Some T-duals and Heterotic duals are also discussed, these are non-Calabi-Yau spaces. A superpotential is constructed describing these duals.Comment: Discussion of susy breaking vacua significantly altere
    • …
    corecore