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1. Introduction

Compactifications of String Theory in the presence of flux have attracted considerable

attention lately [1–27]. These compactifications are of interest from several different points

of view. Phenomenologically they are attractive because turning on flux typically leads to

fewer moduli, and also because flux leads to warping which is of interest in the Randall

Sundrum scenario, [28,14]. Cosmologically they are worth studying because the resulting

potential in moduli space could lead to interesting dynamics. From a more theoretical

view point these models enlarge the class of susy preserving vacua in string theory and

one hopes this will improve our understanding of N = 1 string theory.

In this paper, we will study type IIB string theory in the presence of flux. General

considerations pertaining to this case were discussed in [6]. Subsequently, a concrete

example was studied in [9] involving flux compactifications of IIB on an T 6/Z2 orientifold.

In many ways this paper can be thought of as an continuation of the investigation begun in

[9]. Here we study the next simplest case, where the compactification is on a K3× T 2/Z2

orientifold. The purpose behind these investigations is two fold. Qualitatively, one would

like to gain some appreciation for how easy it is to obtain stable supersymmetric vacua

after flux is turned on. This is important, in view of the discussion in [6] which shows

that supersymmetry is generically broken once flux is turned on, and also bearing in mind

that previous attempts to turn on flux have usually lead to unstable vacua with runaway

behaviour [29–31]. Quantitatively, one would like to know how much information can be

obtained about the susy preserving vacua, whether the required non-genericity of the flux

can be spelt out in an explicit manner, and whether the location of the minimum in moduli

space can be determined and the resulting masses of moduli be obtained.

We will carry out this investigation in detail in this paper. We solve the supersym-

metry conditions explicitly to obtain the general susy preserving vacua in this model. The

main point worth emphasising about our analysis is that we obtain our result without

having to explicitly parametrise the moduli space of complex and Kähler deformations on

K3. Such a parametrisation would both be inelegant and impractical. Instead, by using an

important theorem, called Torelli’s theorem [32], which pertains to the complex structure

of K3, we are able to map the problem of finding susy preserving vacua into a question

of Linear Algebra in the second cohomology group H2(K3,R) of K3. This question turns

out to be easy to answer and yields the general susy preserving vacua mentioned above.

Our analysis allows us to state the required conditions on the flux for a susy preserving

vacuum in a fairly explicit manner. We find that, qualitatively speaking, these conditions
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are easy to meet, so that several susy preserving vacua exist. The complex structure moduli

are generically completely frozen in these vacua and some but not all of the Kähler moduli

are also fixed. It is quite straightforward to determine in a quantitatively precise manner

the location of the vacua in moduli space.

This paper is organised as follows. §2 discusses some important preliminary material.

§3 which contains some of the key results of the paper, describes the general strategy

mentioned above for finding supersymmetry preserving vacua. This general discussion is

illustrated by examples in §4 where two cases are discussed in some length.

The case of N = 2 supersymmetry does not fall within the general discussion of §3
and is analysed in §5 with an example. The resulting moduli spaces of complex and Kähler

deformations are also determined.

In §6 we construct an interesting infinite family of fluxes, unrelated by duality, all of

which require the same number of D3 branes for tadpole cancellation. We find however

that only one member of this family gives rise to an allowed vacuum.

Various dual descriptions of the K3×T 2/Z2 model are discussed in in §7. One and two

T-dualities give rise to Type I
′

and Type I descriptions. The latter in turn, after S-duality,

gives rise to models in heterotic string theory. The resulting compactifications are non-

Calabi-Yau spaces in general. An explicit superpotential, which is valid quite generally, is

constructed in these dual descriptions. It depends on various fluxes and certain twists in

the geometry.

Our methods can be used to provide a general solution for flux compactifications on

T 6/Z2 considered in [9] as well (building on an approach discussed in that paper). This is

discussed in §8 briefly.

Finally, some details are discussed in the appendices A, B and C.

Let us end by commenting that the K3×T 2/Z2 model with flux, studied in this paper,

has also been analysed in [22]. Various features of the compactification were deduced in

that paper by considering an M-theory lift, and also the heterotic dual was discussed in

some detail [24]. While this manuscript was in preparation we became aware of [33], which

discusses various aspects of Heterotic compactifications with flux in some depth. We thank

the authors for discussion and for keeping us informed of their results prior to publication.
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2. Background

Some background material for our investigation is discussed in this section. §2.1

discusses some of the essential features of IIB compactifications with flux, §2.2 gives more

details relevant to the K3 × T 2/Z2 case. §2.3 discusses some basic facts about K3 that

will be relevant in the discussion below. Finally §2.4 briefly discusses the lifting of open

string moduli.

2.1. IIB compactifications with Flux

Our starting point is a compactification of IIB string theory on a K3 × T 2/Z2 orien-

tifold. The orientifold Z2 group is given by {1, Ω(−1)FLR} where R is a reflection which

inverts the two coordinates of the T 2 and Ω and FL stand for orientation reversal in the

world sheet theory and fermion number in the left moving sector respectively. This model

is T-dual to Type I theory on K3 × T 2 which in turn is S-dual to Heterotic on K3 × T 2.

The main aim of this paper is to study supersymmetric compactifications after turning

on various NS-NS and R-R fluxes in this background. The general analysis of such flux

compactifications was carried out in [6]. Let us summarise some of their main results here.

Turning on flux alters the metric of the internal space by an overall warp factor. For

the case at hand this means upto a conformal factor the internal space is still K3×T 2/Z2.

Define

G3 = F3 − φH3 , (2.1)

where F3 = dC2,H3 = dB2 denote the RR and NS three forms and φ = a+i/gs denotes the

axion-dilaton. (Our notation closely follows that of [6], see also [9]). N = 1 supersymmetry

requires that G3 is of type (2, 1) with respect to the complex structure of K3 × T 2/Z2,

i.e. it has index structure [G3]ijk̄ where i, j denote holomorphic indices and k̄ an anti

holomorphic index. Furthermore for supersymmetry one needs G3 to be primitive, that is

J ∧ G3 = 0 (2.2)

, where J denotes the Kähler two-form on K3 × T 2/Z2 .

One of the main motivations for studying compactifications with flux is moduli stabil-

isation. The requirement that G3 is (2, 1) typically completely fixes the complex structure

for the compactification, we will see this in the analysis below for the example at hand. The

primitivity condition (2.2) is automatically met if the compactification is a (conformally)

Calabi-Yau threefold (CY3), since there are no non-trivial 5-forms on a CY3. For K3×T 2
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in contrast this condition is not automatic and does impose some restriction on the Kähler

moduli. An important Kähler modulus which is left unfixed is the overall volume. Since

the primitivity condition is unchanged by an overall rescaling J → λJ , it does not lift this

modulus.

One comment about non-susy vacua is also worth making at this stage. The low-

energy supergravity obtained after turning on flux is of the no-scale type. The flux gives

rise to a potential for the moduli with minima at zero energy. The requirements imposed

by minimising the potential are less restrictive than those imposed by supersymmetry. To

minimise the potential G3 can have components of (2, 1), (0, 3) and (1, 2) type. The (2, 1)

component must be primitive and the (1, 2) component must be of the form J ∧ α where

α is a non-trivial (0, 1) form. We will have more to say about non-susy vacua and the

primitivity condition in §6.

2.2. The K3 × T 2/Z2 case in more detail.

It is worth commenting more on some details relevant to the K3× T 2/Z2 compactifi-

cation we will study in this paper.

The first comment relates to tadpole cancellation for various RR fields. Consider first

the 7-brane tadpole. The Z2 orientifold symmetry has 4 fixed points on the T 2, an O7-

plane is located at each of these fixed points. To cancel the resulting 7−brane charge 16

D7-branes need to be added.

Next consider the 3-brane tadpole [34]. Both the O7-planes and the D7-branes wrap

the K3 (besides filling spacetime). As a result, it turns out, 2 units of D3 brane charge are

induced on the world volume of each O7-plane and one units of D3 brane charge in each

D7-brane, 1 giving rise to a total of 24 units of three brane charge. This charge needs to

be canceled by adding D3-branes and flux. The relevant formula for tadpole cancellation

then takes the form:
1

2
Nflux + ND3 = 24 , (2.3)

where

Nflux =
1

(2π)4(α′)2

∫

K3×T 2

H3 ∧ F3 . (2.4)

Note in particular that with our normalisations the integral in (2.4) is over the covering

manifold, before identification under the orientifold Z2 symmetry. Actually, (2.3) is not the

1 The simplest way to see this is the following: in F-theory there are no O7 planes. Instead

there are 24 (p, q) 7-branes each of which acquires one unit of 3-brane charge on wrapping K3.
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most general expression for the tadpole condition, instantons excited in the world volume

of the 7-branes will give rise to 3-brane charge in general. In this paper we will only deal

with the case where these instantons are not excited.

The second comment pertains to the number of moduli from the closed string sec-

tor present in the model before flux is turned on. In the closed string sector the fields

gMN , C4, C0, φ are even under the action of Ω(−1)FL , while B2, C2 are odd. This means

one gets 4 gauge bosons from B2 and C2. In addition the metric, and C4 give rise to 61 and

25 scalars respectively, yielding a total of 86 scalars. The resulting compactification has

N = 2 supersymmetry (before flux is turned on) with the gravity multiplet, three vector

multiplets and twenty hypermultiplets. In addition, while we do not provide a precise

count here, there are moduli that arise from the open string sector. These include moduli

due to exciting the gauge fields on the 7 branes, the location of the 7-branes on the T 2

and the locations of the D3 branes in the K3 × T 2/Z2.

Finally, we discuss the quantisation conditions which must be met by the H3 and F3

flux. Due to the discrete identification in the compactification this condition is a bit subtle.

The orientifold K3 × T 2/Z2 has additional ‘half’ three-cycles not present in the covering

manifold K3×T 2. To satisfy the quantisation condition on these three-cycles one requires

that
1

(2π)2α′

∫

γ

F3 = 2Z ,
1

(2π)2α′

∫

γ

H3 = 2Z, (2.5)

where γ is an arbitrary class of H3(K3× T 2,Z). Other possibilities which include turning

on exotic flux at the O planes were discussed in [10] but will not be explored further here.

In the discussion below we will explicitly parametrise the fluxes as follows. Choose

coordinate x, y for the T 2, with 0 ≤ x, y ≤ 1. The flux which is turned on must be

consistent with the orientifold Z2 symmetry. Since B2 and C2 are odd under Ω(−1)FL this

means the allowed F3 and H3 must have two legs along the K3 and one along the T 2.

That is
1

(2π)2α′
F3 = αx ∧ dx + αy ∧ dy (2.6)

1

(2π)2α′
H3 = βx ∧ dx + βy ∧ dy, (2.7)

where αx, αy, βx, βy ∈ H2(K3,Z). If ei is a basis of H2(K3,Z) and αx = αi
xei we have tak-

ing into account the quantisation condition that αi
x is even integer, similarly for αy, βx, βy.

5



Finally, we note that with our choice of orientation, as explained in App. A, Nflux (2.4),

takes the form

Nflux =

∫

(βx ∧ αy ∧ dx ∧ dy + βy ∧ αx ∧ dy ∧ dx) = (−βx · αy + βy · αx) . (2.8)

2.3. Some essential facts about K3

K3 is the two (complex) dimensional Calabi-Yau manifold. It is Kähler and has SU(2)

holonomy. For an excellent review, see [32] .

H2(K3,R) is 22 dimensional. An inner product can be defined in H2(K3,R) as

follows. If ei, ej ∈ H2(K3,R)

(ei, ej) ≡
∫

K3

ei ∧ ej . (2.9)

This inner product matrix can be shown to have signature (3, 19). H2(K3,R) with this

metric can be naturally embedded in R3,19.

H2(K3,Z), can be thought of as a lattice. It is known to be even and self dual. These

two conditions are highly restrictive. In a particular basis ei (discussed in App. A) the

inner product matrix (2.9), can be shown to have the form, eq. A.3 (App. A) consistent

with these restrictions. We will refer to the lattice, together with this inner product, as

Γ3,19, below.

The moduli space of complex structures on K3 is particularly relevant for this paper

since many directions lifted by flux lie in this moduli space. Torelli’s theorem is important

in this context. It says that, upto discrete identifications, the moduli space of complex

structures on K3 is given by the space of possible periods of the holomorphic two-form Ω.

Decomposing Ω into its real and imaginary parts we have

Ω = x + iy (2.10)

where x, y ∈ H2(K3,R). Ω satisfies two conditions

∫

Ω ∧ Ω = x · x − y · y + 2ix · y = 0 , (2.11)

and
∫

Ω ∧ Ω̄ = x · x + y · y > 0 . (2.12)

From (2.11) we see that x, y are orthogonal and from (2.12) that both x, y are spacelike.

So x, y span a space-like two-plane in H2(K3,R) or equivalently R3,19. Changing the
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orientation of the two-plane corresponds to taking Ω ↔ Ω̄. The space of possible periods

is then the space of oriented two-planes in R3,19. This space is called the Grassmanian,

G = O(3, 19)+/(O(2) × O(1, 19))+. (2.13)

It is twenty (complex) dimensional.

Next, let us consider the Kähler two-form, J̃ on K3. Since K3 is Kähler, J̃ ∈ H2(K3,R).

In addition it satisfies two conditions:

∫

J̃ ∧ Ω = 0, (2.14)

and
∫

J̃ ∧ J̃ > 0. (2.15)

With respect to the inner product, (2.9), the first condition tells us that J̃ is orthogonal

to Ω, while the second says that it is a space-like two-form.

Putting this together with what we learnt above, we see that the choice of a complex

structure and Kähler two-form on K3 specifies an oriented space-like three-plane Σ in

H2(K3,R) ∈ R3,19. The Einstein metric is completely specified once this choice is made.

It is then easy to see that the moduli space of Einstein metrics on K3, upto discrete

identifications, is of the form

ME ≃ O+(3, 19)/(SO(3)× O(19)) × R+. (2.16)

This is 58 real dimensional 2.

Finally, we will work in the supergravity approximation in this paper. With that

in mind, it will be useful to know in the following discussion when the the moduli are

stabilised at a point away from an orbifold singularity of K3. Theorem 4 in [32] tells us

that this condition is met if the space-like three plane Σ is not orthogonal to any Lattice

Vector 3 of Γ3,19.

2 Different choices of an oriented two-plane in the chosen three-plane give rise to different

complex structures consistent with the same Einstein metric. This is a reflection of the underlying

Hyper Kähler geometry.
3 In terms of the basis ei, a Lattice Vector is of form, niei, n

i ∈ Z.
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2.4. Open String Moduli

Most of this paper deals with closed string moduli. Before going on though it is worth

briefly commenting on open string moduli. These moduli are of two kinds. If D3-branes

are present, their location in the K3 × T 2/Z2 space gives rise to moduli. Turning on flux

does not freeze these fields as long as the conditions for supersymmetry are met, this can

be easily seen from the supersymmetry analysis, [35].

The second kind of open string moduli are the location of the D7- branes in the

transverse T 2 directions. There are 16 such branes present. In the analysis below we take

them to be symmetrically distributed so that each O7 plane has 4 D7 branes on it. As a

result the dilaton will be constant (except for the singularities at the D7/O7 planes). We

then consistently seek solutions which meet the conditions for supersymmetry, discussed

in §2.1.

Perturbing around such a solution, one can show that generically the 7-brane moduli

are lifted. There are two ways to see this. From the point of view of ten-dimensional IIB

theory, this happens because of the restrictive nature of the (2, 1) condition that G3 must

satisfy. Note that this condition must be met at every point in the compactification. Once

the D7-branes move away from the O7-planes, the dilaton varies and the (2, 1) condition

will not be met generically. From the F-theory viewpoint this can be understood similarly

as a consequence of the restrictive nature of the (2, 2) condition that G4 must satisfy. It

is easy to see that any susy solution with constant dilaton in the IIB theory lifts to a susy

preserving solution of F-theory with G4 being of type (2, 2) and primitive. Now the (2, 2)

condition imposes strong constraints on the complex structure moduli and in fact over

determines them. As a result, perturbing around a given solution we generically do not

expect any complex structure moduli to survive. From the IIB perspective this means all

the D7-brane moduli as well as the dilaton and the complex structure of the T 2 should be

fixed.

Let us end by commenting that some of these issues are discussed in more detail, from

the perspective of the Heterotic theory, in [33].

3. Supersymmetric Vacua

In the following two sections we solve the conditions imposed by supersymmetry and

find the general supersymmetric vacua for flux compactifications on K3 × T 2/Z2. Since

the discussion is quite technical it is helpful to first summarise the key ideas.
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The conditions imposed by supersymmetry are well known. The flux, G3, should be

of type (2, 1) and it should satisfy the requirement of primitivity.

The main challenge is to explicitly implement these conditions and find susy preserving

vacua. The (2, 1) condition in particular is very restrictive, and, as we shall see below,

cannot be met for generic fluxes. In finding the general supersymmetric solutions we will

determine both the allowed flux and the resulting susy vacua. A brute force approach,

relying on an explicit parametrisation of moduli space, is not practical for this purpose.

For example, the complex structure moduli space of K3 is 20 dimensional and not easy to

explicitly parametrise.

The key to making progress is Torelli’s theorem for K3, which we discussed in §2.3

above. This theorem allows us to restate the search for susy solutions as a problem in

Linear Algebra in H2(K3,R). Seeking a complex structure in which the flux is of type

(2, 1) translates to searching for an appropriate space-like two-plane in H2(K3,R). The

restrictive nature of the (2, 1) condition, which we mentioned above, can now be turned

into an advantage. The flux defines a four dimensional subspace of H2(K3,R), which we

denote as Vflux. Susy requires that the two-plane must lie in Vflux. This is itself a big

simplification since it narrows the search from the 22 dimensional space, H2(K3,R), to a

four dimensional one. But in fact one can do even better. One finds that the (2, 1) con-

dition determines the two-plane completely in terms of the dilaton-axion and the complex

structure modulus of the T 2. The remaining conditions then determine these two moduli

and provide some of the required conditions on the flux.

Turning next to the requirement of primitivity, which is a condition on the Kähler

two-form, one finds it maps to the search for a space-like vector in H2(K3,R) which

is orthogonal to Vflux. Unlike in the case of the complex structure, this is not a very

restrictive condition. It does impose some additional conditions on the flux, but once

these conditions are met, many solutions exist in which some but not all Kähler moduli

are frozen.

In this way we determine the most general susy preserving solutions for flux compact-

ifications on K3 × T 2/Z2.

The rest of this section will present the analysis sketched out above in more detail.

In §3.1 we discuss the (2, 1) condition. We show that it determines the complex structure

of K3 in terms of the dilaton-axion and the complex structure of the T 2. We also find

the constraints it imposes on these two moduli and on the flux. In §3.2 we solve these
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constraints explicitly and determine the complex structure of K3, T 2 and the dilaton-

axion. We also make the constraints on the flux explicit. In §3.3 we discuss the primitivity

condition. We determine the restrictions it imposes on the Kähler moduli and on the flux.

Finally, we summarise the results of this section in §3.4 stating the resulting values of

the complex structure moduli, the restrictions on the Kähler moduli, and the conditions

imposed on the flux for susy preserving vacua.

3.1. The (2, 1) Condition

We start by considering the restrictions imposed by the condition that G3 is of type

(2, 1).

One way to formulate these conditions is to construct the superpotential [1,6],

W =

∫

G3 ∧ Ω3 (3.1)

which is a function of all the complex structure moduli and also of the axion-dilaton. One

can show then that imposing the conditions:

W = ∂iW = 0, (3.2)

where i denotes any complex structure modulus or the dilaton field, ensures that G3 is

purely of type (2, 1). Notice that we have one more condition than variables in (3.2) .

Two conclusions follow from this. First, as was mentioned above, we see that for generic

fluxes there are no susy preserving minima. Second, we learn that in the class of fluxes

which preserve susy generically all complex structure moduli are stabilised. In finding

susy solutions we will determine below what conditions the flux must satisfy along with

the resulting values for the complex structure moduli and the dilaton.

A straightforward way to proceed, as followed in [9], is to explicitly parametrise the

complex structure moduli space, determine W , and then search for solutions. For the

case at hand, this is not very practical. The main complication is the complex structure

moduli space of K3. An explicit parametrisation of the twenty dimensional Grassmanian

is possible, but the resulting expressions are quite unwieldy.

The crucial idea which allows us to make progress is Torelli’s theorem, as was men-

tioned above. We are seeking a complex structure, with respect to which G3 is of type

(2, 1). Torelli’s theorem states that the complex structure is specified by a space-like two
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plane in H2(K3,R). We can think of this two-plane as determining the holomorphic two-

form Ω and from it the complex structure. With this in mind we recast the search for

the required complex structure in terms of conditions on the two-plane. Fortunately, as

we see below, these conditions are simple to state and restrictive enough to determine the

two-plane without requiring an explicit parametrisation of the complex structure moduli

space of K3.

We begin by choosing the complex structure modulus on the T 2 to be τ , so that we

can define complex coordinates on it of the form,

z = x + τy , z̄ = x + τ̄ y . (3.3)

In (2.6),(2.7), we defined four vectors, {αx, αy, βx, βy} ∈ H2(K3,Z) ⊂ H2(K3,R) which

specify the three-form flux completely. We will refer to these as the flux vectors below.

Together they define a subspace of H2(K3,R) which we call Vflux. G3 can then be written

as

G3 = nxdx + nydy , (3.4)

where the 2-forms nx, ny are given by

nx ≡ αx − φβx , ny ≡ αy − φβy . (3.5)

In terms of the complex coordinates on the T 2, (3.3), we can express G3 as

G3 =
1

τ̄ − τ
(Gzdz + Gz̄dz̄) (3.6)

with

Gz = (nxτ̄ − ny) (3.7)

and

Gz̄ = −(nxτ − ny) . (3.8)

For G3 to be of (2, 1)-type the two form Gz̄ in K3 must be of type (2, 0). Since the

Holomorphic two-form is unique we learn that

Gz̄ = c Ω, (3.9)
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where c is a constant. We must emphasise that (3.9) determines the complex structure of

K3 completely in terms of the flux, and the moduli, φ, τ (which enter in (3.8)) 4. Eq.(3.9),

will play a central role in the discussion below.

Now we can use the remaining conditions imposed by susy and consistency to de-

termine the remaining two moduli, the dilaton-axion and τ , and also obtain the required

conditions which should be satisfied by the non-generic flux for a susy condition to exist.

From (2.11) we see that the following condition must hold:

Gz̄ · Gz̄ = 0. (3.10)

Two other conditions arise as follows. For G3 to be of type (2, 1) we see from (3.7),

that Gz must be of type (1, 1). This means

Ω · Gz = 0 , (3.11)

and

Ω · Ḡz = 0 , (3.12)

which can be reexpresed as

Gz̄ · Gz = 0 (3.13)

and

Gz̄ · Ḡz = 0. (3.14)

One final condition arises from the requirement that the two-plane defining Ω is space-

like, (2.12). From (3.9), it takes the form:

Gz̄ · Ḡz̄ > 0. (3.15)

We see that, (3.10),(3.13), and, (3.14), are three polynomial equations in two variables,

φ and τ . Generically they will not have a solution. This was expected from our discussion

of the superpotential at the beginning of this section. Two of these equations can be used

to solve for φ, and τ . The third equation then gives two real conditions on the flux. Finally,

we also need to ensure that the flux meets the inequality (3.15).

4 We will assume in this section that Gz̄ is non-zero, so that the constant c in (3.9)is non-zero.

The case where Gz̄ = 0 is dealt with separately in §5.
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3.2. Solving the Equations

In this section we discuss in more detail how to explicitly solve the three equations,

(3.14),(3.10), (3.15), which were obtained above from the (2, 1) requirement.

These equations can be written as

(n̄xτ − n̄y) · (nxτ − ny) = 0 (3.16a)

(nxτ̄ − ny) · (nxτ − ny) = 0 (3.16b)

(nxτ − ny) · (nxτ − ny) = 0 . (3.16c)

We will in particular be interested in non-singular solutions for which Imφ, Imτ 6= 0.

Since, Imτ 6= 0, (3.16b), (3.16c), give

nx · (nxτ − ny) = 0, (3.17)

and

ny · (nxτ − ny) = 0. (3.18)

Similarly, since, Imφ 6= 0 (3.16a), (3.16c), give

(αxτ − αy) · (nxτ − ny) = 0 . (3.19)

Using (3.17) we can eliminate τ from the remaining two equations to get,

(nx · nx)(ny · ny) − (nx · ny)2 = 0 (3.20a)

(αx ·nx)(nx ·ny)
2 − (nx ·nx)(nx ·ny) (αx · ny + αy · nx)+ (αy ·ny)(nx ·nx)2 = 0 . (3.20b)

Using the expressions for nx and ny from (3.5) this yields two polynomials, one quartic

and the other quintic in φ, of the form:

q1φ
4 + q2φ

3 + q3φ
2 + q4φ + q5 = 0 , (3.21a)

p1φ
5 + p2φ

4 + p3φ
3 + p4φ

2 + p5φ + p6 = 0, (3.21b)

where the coefficients qi, pi, are real and can be expressed in terms of inner products of

the flux vectors, as is discussed in App. B.
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For a non-singular solution, φ, must be complex. Since the coefficients of the two

polynomials are real this means that (3.21a), (3.21b), must share a common quadratic

factor.

In general, as is discussed in App. B this happens when the following condition is

met: Define the matrix

M ≡























p1 0 0 −q1 0 0 0
p2 p1 0 −q2 −q1 0 0
p3 p2 p1 −q3 −q2 −q1 0
p4 p3 p2 −q4 −q3 −q2 −q1

p5 p4 p3 −q5 −q4 −q3 −q2

p6 p5 p4 0 −q5 −q4 −q3

0 p6 p5 0 0 −q5 −q4

0 0 p6 0 0 0 −q5























. (3.22)

Then (3.21a),(3.21b), have a common quadratic factor, if M has a zero eigenvalue.

That is if a non-zero column vector X exists such that

M · X ≡ M i
jX

j = 0. (3.23)

Note that since M is an 8 × 7 matrix, each column of M can be thought of as a vector in

an 8 dimensional vector space. Then (3.23), is equivalent to requiring that only 6 of these

7 vectors, in the 8 dimensional space, are linearly independent.

Before proceeding let us emphasise that the matrix M depends only on the flux vectors,

so the requirement of a zero eigenvalue gives rise to restrictions on the flux which must be

met for a susy solution to exist.

Once condition (3.23) is met, the resulting common quadratic factor has the form

W (φ) = w1φ
2 + w2φ + w3 (3.24)

where

w1 =
q1

s1
, w2 =

s1q2 − s2q1

s2
1

, w3 =
q5

s3
, (3.25)

and s1, s2, s3 refer to the first three components of X as is explained in App. B.

We can now finally solve for φ by setting W (φ) = 0. This gives,

φ =
−w2 ±

√

w2
2 − 4w1w3

2w1
. (3.26)
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For a nonsingular solution, the imaginary part of φ, must not vanish. This gives the

following additional conditions on the flux,

w2
2 < 4w1w3 . (3.27)

Once φ is determined, τ can be obtained from (3.17). It is given by

τ =
nx · ny

nx · nx
. (3.28)

We should note that in case nx · nx = 0, (3.28), is not valid. Instead one can use (3.16a),

which yields,

τ =
(n̄x · ny + n̄y · nx) ±

√

(n̄x · ny + n̄y · nx)2 − 4(n̄x · nx)(n̄y · ny)

2(n̄x · nx)
. (3.29)

(Requiring Im(τ) > 0 fixes the sign ambiguity in (3.29).) Eq. (3.29), is also useful for

stating an additional condition on the flux which arises from the requirement that Imτ 6= 0.

This condition takes the form

(n̄x · ny + n̄y · nx)2 < 4(n̄x · nx)(n̄y · ny) , (3.30)

where φ, is given in (3.26).

Finally a condition on the flux arises from (3.15). Using (3.9), this takes the form,

(nxτ − ny) · (n̄xτ̄ − n̄y) > 0 , (3.31)

with τ and φ given in terms of the flux, in (3.28), (3.26).

In summary, the (2, 1) condition determines the complex structure of the K3×T 2/Z2

space completely in a susy preserving solution. The dilaton-axion, φ, and the complex

structure modulus of the T 2, τ , are given by (3.26), (3.28). The complex structure of K3

is determined implicitly by Ω which is given by (3.9). In addition the following conditions

are imposed on the flux: the matrix M (3.22) must have a zero eigenvector, and the

conditions (3.27), (3.30), and (3.31), must hold.
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3.3. Primitivity

We turn next to the requirements imposed by the primitivity condition.

On K3 × T 2, the Kähler two-form, J , is given by 5

J = J̃ + gzz̄dz ∧ d̄z, (3.32)

where z, z̄ denote coordinates on the T 2 and J̃ ∈ H(1,1)(K3).

The primitivity condition is (2.2). From the form of G3 we see that there are no

constraints on gzz̄, so the Kähler modulus of the T 2 is not fixed. The constraints on J̃ , in

terms of the inner product, (2.9), take the form,

J̃ · Gz = J̃ · Gz̄ = 0. (3.33)

Since Im(τ), Im(φ) 6= 0, for a non-singular solution, we learn from (3.5) that

J̃ · αx = J̃ · αy = J̃ · βx = J̃ · βy = 0. (3.34)

Thus J̃ must be orthogonal to the vector space Vflux.

An acceptable J̃ must meet the following two additional conditions. It should be a

space-like, i.e., positive norm vector in H2(K3,R). And, it should be of type (1, 1). This

latter condition can be stated as follows:

J̃ · Ω = J̃ · Ω̄ = 0. (3.35)

From (3.9), we see that (3.35), is automatically met if (3.34), is true. This leaves the

two conditions of J̃ being space-like and orthogonal to Vflux. Since H2(K3,R) is 22

dimensional, at first glance, it would seem that these conditions can be met for generic

fluxes, leaving 18 of the K3 Kähler moduli unfixed.

Some thought shows that this is not true and that in fact the flux must meet some

conditions in general. The metric on H2(K3,R) gives rise to an inner product matrix

in Vflux in an obvious manner. It is convenient to state the restrictions on the flux, in

terms of the number of non-trivial eigenvectors, with positive, negative and null norm,

of this matrix. One can show, as we will argue below, that the number of positive norm

5 For ease in subsequent discussion, we drop the overall factor of i, that is conventionally

present in the definition of J .
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eigenvectors must be 2 and the number of null eigenvectors must be 0, for a non-trivial

space-like J̃ to exist that meets, (3.34). This leaves the following three possibilities:

a) dim Vflux = 2, (2+, 0−)

b) dim Vflux = 3, (2+, 1−)

c) dim Vflux = 4, (2+, 2−),

where in our notation (2+, 1−) means two eigenvectors of positive norm and one of negative

norm etc.

In the next two paragraphs we pause to discuss how this conclusion comes about.

Thereafter we return to the main thread of the argument again. Since Ω lies in Vflux and

is space-like, the number of positive-norm eigenvectors must be at least two. Since the

signature of H2(K3,R) is (3, 19) the maximum number of positive norm eigenvectors can

be three. But if it is three then J̃ cannot be orthogonal to Vflux and still be spacelike 6.

Thus, there must be exactly two spacelike eigenvectors in Vflux.

Next, we turn to the number of eigenvectors with null norm. Any such eigenvector

must be orthogonal to the two eigenvectors with positive eigenvalues. So if such an eigen-

vector exists, and J̃ is orthogonal to it, besides being orthogonal to the two space-like

vectors, one can again show that it cannot be space-like 7.

The argument in the previous two paragraphs shows that Vflux must meet one of the

three possibilities discussed above. Once the flux meets this requirement, the condition

(3.34), can be satisfied by a space-like J̃ . Since (3.34), imposes 4 conditions this leaves 18

moduli in the K3 Kähler moduli space, besides the Kähler modulus of the T 2, unfixed.

Orbifold Singularities

There is one final point we should discuss in this section. This is concerned with

the existence of an orbifold singularity on the K3 surface. At such a singularity various

two-cycles shrink to zero size and additional light states obtained by branes wrapping

such cycles can enter the low energy theory. Since we work with a supergravity theory

without these states, our analysis of the resulting vacuum is self-consistent only if it does

not contain any such light state.

6 One can construct a basis of H2(K3,R), starting from these three spacelike vectors and

appending 19 time-like vectors to them. Then if J̃ is orthogonal to the three spacelike ones it

must be purely time like.
7 Let the two spacelike vectors be v1, v2 and the null vector be vN = v3 + v4, where v3 is

spacelike and v4 is time like. Then orthogonality would require that J̃ = vN + vt, where vt is a

time like vector orthogonal to v1, v2, vN . This makes J̃ time-like.
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Usually in string theory at an orbifold point additional light states are avoided by

giving an expectation value to the axionic partner of the blow-up mode of the vanishing

two-cycle. In our constructions we do not always have the freedom to turn on such an ex-

pectation value, since the Kähler mode corresponding to blowing up the cycle is sometimes

lifted. In such cases the axionic partner is also lifted, typically this happens because it is

eaten by some Gauge Boson, in the low-energy gauged supergravity. It is an interesting

question to ask what are the masses of states which arise from wrapped branes in such a

case, but we have not investigated this yet.

To avoid these complications we will mainly only consider vacua below which lie away

from an orbifold singularity or if at an orbifold, where the relevant blow up modes are not

lifted. Two exceptions to this are the discussion towards the end of §4.1 which describes a

solution generating technique that could have wider applicability, and §5 which discusses

N = 2 solutions. The N = 2 vacua could prove useful in determining modifications to the

BPS formulae for wrapped branes in the gauged supergravity obtained after turning on

flux.

The rest of this subsection analyses how to determine if a solution contains an orbifold

singularity.

One can show that the susy preserving conditions discussed above result in an orbifold

singularity iff Vflux contains a Lattice Vector v of Γ3,19, which is orthogonal to Ω. If no

such Lattice Vector exists, one can always choose the Kähler two form J̃ consistent with

the primitivity conditions, to avoid an orbifold.

To see this we recall from §2 that the K3 surface is at an orbifold point in its moduli

space if a Lattice Vector of Γ3,19 exists which is orthogonal to the three plane Σ, that

determines the Einstein Metric. Now if a Lattice Vector v exists which is orthogonal to

Ω and v ∈ Vflux, it must be orthogonal to J̃ (due to the primitivity condition (3.34) ).

Thus it must be orthogonal to Σ, so as claimed above the K3 surface is at an orbifold

singularity. For the converse we need to consider two possibilities. Either there exists no

Lattice Vector orthogonal to Ω, in this case we are done. Or there is such a Lattice Vector

v but it does not lie in Vflux. In this case one can always arrange that J̃ , consistent with

the condition, (3.34), is not orthogonal to v, so again an orbifold is avoided 8.

8 Decompose v = v‖+v⊥, where v‖ lies in Vflux, and v⊥ is perpendicular to Vflux. By orienting

J̃ to have a (”small enough”) component along v⊥ one can then ensure that J̃ ·v 6= 0, while (3.34),

and positivity of J̃ are met.
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3.4. Summary of Conditions Leading to Susy Solutions

The discussion of this section has been quite technical and detailed. It is therefore

useful to summarise the main results here for further reference.

Susy is generically broken for flux compactifications of IIB theory on K3×T 2/Z2. To

preserve susy the flux must meet the following conditions: First, the vector space Vflux

spanned by the flux must be of one of the three classes, a,b,or c, discussed above in the

primitivity section. Second, the matrix M , (3.22), formed from the flux, must have a zero

eigenvalue.

Once these conditions are met a solution exists. The dilaton, φ, is given by (3.26), and

in terms of φ the complex structure modulus of the T 2, τ , is given by (3.28). The complex

structure of the K3 is implicitly determined by Ω which is give by (3.9) in terms of φ, τ .

Unlike the complex structure, the Kähler moduli are not completely determined. Instead

the Kähler two-form of K3 must meet four conditions, (3.34). This generically leaves an

18 dimensional subspace of the K3 Kähler moduli space, and the Kähler modulus of the

T 2, unfixed.

Finally, in order to ensure that the resulting solution is non-singular some additional

conditions must be met by the flux. To ensure that the complex structure moduli are

stabilised at non-singular values, the inequalities, (3.31), (3.27), and (3.30), must be met.

And to ensure that orbifold singularities are avoided in the resulting solution, Vflux must

not contain any Lattice Vector of Γ3,19, which is orthogonal to Ω.

One final comment. Our approach to finding susy preserving solutions above relied

crucially on the fact that the constant c in (3.9), did not vanish. If this constant is zero

the holomorphic two-form of K3 is not constrained to lie in Vflux. This second branch of

solutions will be considered further in §5, it gives rise to N = 2 susy preserving vacua.

4. Some Examples

Here we will illustrate the general discussion of the preceding section with a few

examples. §4.1 discusses the case where Vflux is two dimensional. We consider the general

solution, some examples and also discuss a method of generating additional susy preserving

solutions starting from an existing one. §4.2 applies the general discussion above to an

example where Vflux is four dimensional.
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4.1. Vflux has Dimension 2:

In this case only two of the four flux vectors are linearly independent. Since Ω must be

a two-plane contained in Vflux, this means both vectors spanning Vflux must be spacelike,

so that Vflux is of type (2+, 0−). In this case the two-plane defined by Ω must be Vflux.

Going back to the conditions for G3 to be of type (2, 1) one finds from (3.11), and

(3.12), that

Gz · Ω = Gz · Ω̄ = 0 . (4.1)

Since, in this case, Vflux is spanned by Ω, Ω̄, this means from (4.1), that

Gz = nxτ̄ − ny = 0. (4.2)

Since Imτ 6= 0 for a non-singular solution, we learn from (3.10), that

nx · nx = 0, (4.3)

which can be rewritten as

(αx · αx) − 2(αx · βx)φ + (βx · βx)φ2 = 0 .

Solving for φ we obtain

φ =
1

(βx · βx)

(

(αx · βx) ±
√

(αx · βx)2 − (αx · αx)(βx · βx)
)

(4.4)

Imφ 6= 0 implies (αx · βx)2 < (αx ·αx)(βx · βx) . So the vectors αx and βx must be linearly

independent.

With φ fixed, (4.2), is two complex equations in τ , one of these can be used to

determine τ , the other then gives two real conditions on the flux. Multiplying both sides

of (4.2) by n̄x we have that

τ̄ =
ny · n̄x

nx · n̄x
, (4.5)

or equivalently

τ =
n̄y · nx

nx · n̄x
. (4.6)

Multiplying (4.2) by nx gives

nx · ny = 0 , (4.7)

substituting for φ, τ from (4.4), (4.6), in (4.7), we get the two conditions on the flux

mentioned above. Finally we note that since Ω, is a spacelike two plane by construction in
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this case, the inequality (3.31) is automatically met. Also since Ω spans Vflux, the moduli

of K3 can be chosen to be away from an orbifold point.

Next we turn to primitivity (3.34), which requires that J̃ is orthogonal to the vector

space Vflux. In the present example, this condition does not yield any extra restrictions

on the flux. It can be met easily. H2(K3,R) is 22 dimensional. (3.34), imposes two

conditions allowing for all twenty Kähler moduli of K3, and the one Kähler modulus of

the T 2, to vary.

As a concrete example consider the case where αx, βx are the two linearly independent

flux vectors, with

αy = −βx and βy = αx . (4.8)

In addition take the flux to satisfy the conditions

α2
x = β2

x , (4.9)

and

αx · βx = 0 . (4.10)

From (4.4), one finds then that the dilaton is stabilised at the value

φ = ±i . (4.11)

Taking φ = i from (4.6), we have that

τ = i . (4.12)

We see that with this choice of flux, (4.7), is automatically met. As mentioned above in

this case, Ω corresponds to the two plane spanned by αx, βx.

Next we come to the tadpole conditions. From (2.8), and (4.8), we see that Nflux is

given by

Nflux = 2α2
x, (4.13)

so that the D3 brane tadpole condition takes the form

α2
x + ND3 = 24 . (4.14)

This condition can be easily met.
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As a specific illustration, we take, in the notation of App. A,

αx = 2e1 , βx = 2e2 , (4.15)

so that conditions (4.9),(4.10), are met (the even coefficients in (4.15), ensure the correct

quantisation conditions). We then have that

ND3 = 24 − 8 = 16, (4.16)

number of branes must be added in the compactification. Let us end by mentioning that

in this example, (4.15), primitivity requires the Kähler two-form of K3 to be of the form

J̃ =

22
∑

i=3

tiei ,

where the real parameters ti are chosen to make J · J > 0. This is a twenty dimensional

space, as was mentioned above.

New Solutions from Old

The case where dim(Vflux) = 2 also allows us to illustrate a trick which is sometimes

helpful in finding additional solutions to the susy conditions. The idea is as follows: Given

a set of flux vectors which give rise to a susy solution, one can try to alter the flux vectors

in such a manner that we keep the dilaton and complex structure of both the K3 and T 2

unchanged. In particular this means keeping Gz̄ unchanged (3.9). Let the αx → αx + δαx

etc. Then we have that

δGz̄ = δnxτ − δny = 0. (4.17)

Since Gz must still be of type (1, 1) for preserving susy we have that

δGz · Ω = δGz · Ω̄ = 0. (4.18)

This yields from (3.9), (4.17), that

δnx · Ω = δnx · Ω̄ = 0. (4.19)

If a δnx can be found, consistent with the quantisation conditions on the flux, (2.5), that

satisfies (4.19), then (4.17)can be solved for δny. In some cases, as we now illustrate, δny

is also consistent with the quantisation conditions. In this case, subject to the primitiv-

ity condition and the D3 brane tadpole condition (2.3) also being met, one can obtain

additional susy preserving solutions.
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As an example consider the set of flux, (4.8), discussed in the previous section. In this

example to begin with, dim.Vflux = 2, and φ = τ = i in the susy vacuum. Now suppose

the flux is changed so that δαx, δβx are both orthogonal to αx, βx. In addition we assume

that

δαy = δβx, (4.20)

and

δβy = −δαx. (4.21)

It is easy to then see that both (4.17) and (4.18) are met. For the new flux dimVflux > 2,

so the primitivity condition can also be met if δαx, δβx are both time like.

Let us end with two comments.

First, the change in Nflux is given by

δNflux = −(δβx · δαy) + δβy · δαx (4.22)

i.e.,

δNflux = −δβ2
x − δα2

x. (4.23)

For time like δβx, δαx this is positive. So by altering the flux in this manner the number

of D3 branes that need to be added can be reduced, (2.3). In particular one can easily find

choices of δαx, δβx which give rise to a vacuum where Nflux = 24 and no D3-branes need

be added.

Second, the above examples with dimVflux > 2, which are generated from the old

solutions by altering the flux vectors, correspond to orbifold singularities. This follows

from the discussions on orbifold singularities in §3.3 and because of the fact that the

lattice vectors δαx, δαy ∈ Vflux are orthogonal to Ω.

4.2. A solution with common quadratic

We now find some solutions of the quartic (3.21a) and quintic (3.21b) . For simplicity

we restrict the flux vectors to satisfy

(αx · αy) = (βx · βy) = (αx · βy + αy · βx) = 0 . (4.24)

We further assume
(βx · βx) = 2(αx · αx) = 2(αx · βx)

(βy · βy) = 2(αy · αy) = 2(αy · βy) .
(4.25)
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With this assumption the quartic and quintic reduces to

αxxαyy

(

4φ4 − 8φ3 + 8φ2 − 4φ + 1
)

= 0 ,

α2
xxαyy

(

−4φ5 + 12φ4 − 16φ3 + 12φ2 − 5φ + 1
)

= 0 ,
(4.26)

where αxx and αyy are defined in App. B. The above polynomials can be rewritten as

αxxαyy

(

2φ2 − 2φ + 1
)2

= 0 ,

α2
xxαyy(1 − φ)

(

2φ2 − 2φ + 1
)2

= 0 .
(4.27)

Clearly, they share a common quadratic

2φ2 − 2φ + 1 (4.28)

which can be set to zero to obtain solution for φ as

φ =
1

2
(1 ± i) . (4.29)

From (3.29) and on using the assumptions (4.24),(4.25) the expression for τ becomes

τ = i

√

αyy

αxx
. (4.30)

The conditions (4.24),(4.25) can be met by some suitable choice of the flux vectors. For

example consider
αx = 2(e1 − e2) ,

αy = 2(e1 + e2 + e4) ,

βx = −4e2 ,

βy = 2(2e1 + e4 + e5) .

(4.31)

This is a solution of (2+, 2−)-type. For these flux vectors αxx = 16 and αyy = 8. Hence,

we have τ = i/
√

2 . The resulting solution is non-singular. Im(φ), Im(τ) 6= 0, and one can

show that (3.31), is also met. One can also show that orbifold singularities are avoided.

Since Im(τ) is irrational, there is no element of Γ3,19 contained in Vflux which is orthogonal

to Ω.

Finally, we note that the contribution due to the flux to the D3-brane tadpole condi-

tion, (2.8), is given by

Nflux = αx.βy − βx.αy = 32 . (4.32)

As a result 8 D3 branes need to be added for a consistent solution.
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5. The Second Branch and N = 2 Supersymmetry

As was mentioned at the very end of §3 the general strategy discussed therein for

finding susy solutions is applicable only if the constant c , (3.9), is non-zero. In section

§5.1 we discuss how to find solutions for which this constant vanishes, by formulating both

the conditions on the flux for such solutions to exist and determining the constraints on

the moduli in the resulting vacua. We will refer to these solutions as lying in the “second

branch”. In §5.2 we show that the second branch in fact meets the necessary and sufficient

conditions for preserving N = 2 supersymmetry. In §5.3 we give an example of such a

solution.

5.1. The Second Branch

We begin by noting that if c, the constant in (3.9), vanishes, then

Gz̄ = nxτ − ny = 0 . (5.1)

Equating the real and imaginary parts of (5.1) separately to zero we obtain

αxRe(τ) − βxRe(τφ) = αy − βyRe(φ) ,

αxIm(τ) − βxIm(τφ) = −βyIm(φ) .

Thus only two of the flux vectors αx, αy, βx, βy, at best, are linearly independent. So the

first thing we learn is that for a solution of this kind, dim Vflux ≤ 2. Since in a nonsingular

solution, Im(φ), does not vanish we can take these two independent flux vectors to be αx,

and βx.

Next let us consider the constraints coming from primitivity. For the solutions of §3
this was discussed in §3.3 and much of that analysis goes over to the present case as well.

In particular, one finds again that J̃ must be spacelike and orthogonal to Vflux.

The remaining constraints come from the (2, 1) condition. This takes the form of the

following equations:

Gz · Ω = 0 , Gz · Ω̄ = 0 , (5.2a)

Ω · Ω = 0 , Ω · Ω̄ > 0 . (5.2b)

From (5.2a) get

(nxτ̄ − ny) · Ω = 0 , (nxτ̄ − ny) · Ω̄ = 0 .
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Using the fact, (5.1) that ny = τnx, and Im(τ) 6= 0, the above conditions can be written

as

nx · Ω = 0 , n̄x · Ω = 0

or equivalently

αx · Ω = 0 , βx · Ω = 0 . (5.3)

As a result we see that Ω must be orthogonal to Vflux.

In §3.3 we found it useful to classify Vflux by the number of positive, negative, and

null norm eigenvectors of the inner product matrix. In the present case, putting the

constraints from the primitivity and the (2, 1) conditions together one can show that Vflux

cannot contain any eigenvectors of positive, or null norm.

The argument is as follows. We saw in §2.3 that Ω, J̃ together define a space-like three-

plane, Σ, in H2(K3, R). Now let v1 ∈ Vflux be a positive norm eigenvector, then Ω and

J̃ and therefore Σ, must be orthogonal to it. But since H2(K3, R) has signature (3, 19),

such a three-plane cannot exist. Thus a non-singular Ω, J̃ , requires that Vflux contains no

positive norm eigenvector. A similar argument shows that Vflux cannot contain any null

norm eigenvector either 9.

The only possibilities we are then left with is that Vflux is of dim. 2 and type (0+, 2−),

or of dim 1 and type (0+, 1−). Once the flux meets these conditions susy preserving vacua

can be found. The complex structure and Kähler two-form are somewhat constrained in

these vacua but not completely fixed. Ω is orthogonal to Vflux and is defined by an oriented

spacelike two plane in the subspace V⊥ orthogonal to Vflux, while Ω, J̃ together define a

space-like three plane in V⊥. E.g., in the case where dim. Vflux = 2, the space of complex

structures of K3 is given (upto discrete identifications) by the Grassmanian

G = O+(3, 17)/(O(2)× O(1, 17))+, (5.4)

9 If vN ∈ Vflux is a null eigenvector, we can write vN = v1 + v4, where v1 · v1 > 0, v4 ·

v4 < 0, v1 · v4 = 0. A basis of orthogonal vectors in H(K3,R) can be now constructed, B =

{v1, v4, v2, v3, v5 · · · v22}, where v1, v2, v3 are spacelike and the rest are timelike. Define V̂ as the

subspace spanned by the basis elements {v2, v3, v5, · · · v22}. One can show that the existence of

non-singular Ω, J̃ , requires the existence of a spacelike three-plane in V̂ . This is impossible since

V̂ has signature (2, 18).

26



which is 36 dimensional, while the moduli space of Einstein metrics has the form (again

upto discrete identifications),

ME = O+(3, 17)/(SO(3)× O(17)) × R+, (5.5)

which is 52 dimensional.

Also, while the Kähler modulus of the T 2 is not constrained. the dilaton φ and the

complex structure of the T 2, τ , can be determined from (5.1). For example, by taking the

projections of (5.1), along αx, we find τ is given by

τ =
(αx · ny)

(αx · nx)
. (5.6)

Taking a projection of (5.1) along βx and using (5.6), we then get,

(βx · nx)(αx · ny) − (βx · ny)(αx · nx) = 0, (5.7)

which is a quadratic equation in φ that can be solved.

To summarise, for a solution along this second branch to exist, the following conditions

must be met by the flux: dim. Vflux ≤ 2, and Vflux must be spanned by time like vectors

10. The dilaton and τ are then determined by (5.7), (5.6). The complex structure and

Kähler moduli of K3 are somewhat constrained but not determined completely, and the

Kähler modulus of the T 2 is not constrained at all.

Before proceeding further, we would like to mention that all the solutions in the second

branch correspond to orbifold singularities. From §2.3 we learn that there exists an orbifold

singularity when ever the space like three plane Σ is orthogonal to a lattice vector of Γ3,19.

Primitivity requires the flux vectors to be orthogonal to the Kähler form J̃ . From (5.3) we

find that they are also orthogonal to Ω. Hence the three plane Σ is orthogonal to Vflux,

resulting in orbifold singularities.

10 There are some additional constraints on the flux which come from requiring that Im(φ) and

Im(τ) are non zero, these can be deduced in a straightforward manner and we will not determine

them explicitly here.
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5.2. N = 2 Supersymmetry

We will now show that solutions in the second branch discussed above meet the nec-

essary and sufficient conditions for N = 2 supersymmetry.

These conditions were discussed for the T 6/Z2 case in [9]. A similar analysis can be

carried out for K3 × T 2/Z2 as well. Here we will skip some of the details and state the

main results. The necessary and sufficient conditions for N = 2 susy are the following: An

SO(4)×U(1) group of rotations acts on the tangent space of K3×T 2. For preserving N = 2

susy G3 must transform as a (3, 0)+2 representation under SU(2)L × SU(2)R × U(1) ≃
SO(4)×U(1). This means in the notation of this paper that Gz̄ must vanish and Gz must

transform as the anti self-dual representation of SO(4) 11.

Since Gz̄ must vanish we see that all N = 2 preserving solutions must lie in the second

branch. We now show that all solutions in the second branch also meet the requirement

of Gz being anti-self dual. To see this, we have to simply note that any vector belonging

to H2(K3, R) which is orthogonal to both Ω and J̃ must be an anti-self dual two-form

12. We saw above that Gz meets this condition in the second branch. This proves that

all solutions in the second branch meet the necessary and sufficient conditions for N = 2

supersymmetry.

A final comment. One should be able to associate more than one complex structure,

which still keeps G3 of type (2, 1), with a solution of N = 2 susy. For solutions in the

second branch such an additional complex structure is given by taking Ω ↔ Ω̄. This clearly

changes the complex structure. And from the discussion of the second branch above it is

easy to see that G3 still continues to meet the (2, 1) condition 13 (primitivity is of course

still true, since J̃ is unchanged).

11 In [9] this representation was referred to as the self-dual representation. The discrepancy is

due to an opposite choice of orientation, or equivalently opposite choice of sign for ǫabcd (notation

of [9]), in the two papers. The choice in this paper agrees with the conventional one, [32] for K3.
12 H2(K3, R) can be decomposed into, H+ + H−, the self-dual and anti self-dual subspace. Σ,

the three plane formed by Ω, J̃ , is identical to H+. Thus any vector orthogonal to Ω, J̃ , must be

anti self-dual.
13 Gz is orthogonal to Ω̄ and Gz̄ vanishes.

28



5.3. An Example

For an example we consider the case where

1

(2π)2α′
F3 =2e4 ∧ dy ,

1

(2π)2α′
H3 =2e4 ∧ dx .

(5.8)

where e4 ∈ Γ3,3 ⊂ Γ3,19 (see App. A). And e4 · e4 = −2, so that e4 is a time-like vector.

From, (2.6), (2.7), we see that αx = 0, βx = 2e4, αy = 2e4, βy = 0. So Vflux is one

dimensional and is of type (0, 1−), i.e., it is spanned by a time like vector. Thus the

required conditions for a solution in the second branch are met. It is easy to see that in

this simple case, φ, τ are not completely fixed. Rather, (5.1) imposes one condition on

them

φτ = −1. (5.9)

The moduli space of complex structure of K3, is now the Grassmanian O(3, 18)/(O(2)×
O(1, 18)) (upto discrete identifications), which is 38 dimensional and the moduli space of

Einstein metrics on K3 has the form O(3, 18)/(O(3)×O(18))×R+, ( again upto discrete

identifications), which is 55 dimensional.

The flux contribution to three brane charge is Nflux/2 = 4, (2.8), (2.3), so that 20

D3-branes need to be added in this case. It follows from the discussion in the previous

subsection that this model has N = 2 supersymmetry.

6. “Large” Flux

In the study of flux vacua it is important to find out how many distinct fluxes there

are (not related by duality) which give rise to allowed vacua. In particular one would like

to know if this number is finite or infinite. A related question is to ask if the flux can be

made “large” subject to the restriction that the total D3-brane charge is fixed. In this

section we examine this question for the K3× T 2/Z2 case. We construct a one parameter

family of fluxes which are inequivalent, all of which have the same contribution to the D3

brane charge, (2.4). However only one of these sets of fluxes gives rise to a vacuum, for all

the other values of the parameter one can show that there is no susy preserving or susy

breaking vacuum.
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The idea behind the construction is as follows. Consider starting with a case where

the flux vectors αx, αy, βx, βy, yield a consistent susy solution. Suppose a null vector,

v ∈ H2(K3,Z), v · v = 0, exists which is orthogonal to all four of these flux vectors. Then

one can consider modifying the flux vectors by adding arbitrary (even integer) multiples

of the null vector v. E.g αx → αx +nxv etc. As a concrete example consider starting with

the flux, (4.8), with dimVflux = 2, discussed in §4.1. A null vector v can always be found

in this case orthogonal to Vflux. We can now modify the flux vectors as follows, αy, βx, βy

are unchanged, while,

αx → αx + 2nv. (6.1)

It is quite straightforward to show that the resulting family consists of distinct fluxes not

related by U duality transformations. E.g. large coordinate transformations on K3 cannot

turn the starting flux, to (6.1). This is because to begin, αx = βy , but only αx varies as

n is changed. Similarly S duality which exchanges H3 and F3 and T-duality on the T 2

also do not relate these different choices. Thus we see that as n is varied we have a one

parameter family of different fluxes with the same value of Nflux.

Let us now examine if the modified fluxes lead to allowed vacua. For a susy pre-

serving vacuum the flux must be of type (2, 1) and primitive. Clearly the equations

(3.13),(3.14),(3.10), still continue to hold for the same values of φ, τ as before and the

inequality (3.15) is still met. So with τ and φ fixed at the same value as before the (2, 1)

condition is met for the new fluxes as well. Note that the new complex structure of K3

will change on modifying the flux vectors. From (3.9) we see that Gz̄ and therefore Ω will

be different.

Next let us consider the primitivity condition. It is easy to see that this cannot be met

for the modified flux vectors. This follows from the discussion in §3.3. The inner product

matrix in Vflux, after the modification, will have one null eigenvector. As a result, one

cannot find a spacelike Kähler two-form in K3 orthogonal to Vflux.

So we see that for n 6= 0 there is no susy preserving solution.

Next let us ask about susy breaking vacua. In this case the flux can be a sum of type

(2, 1) and primitive, (0, 3) and (1, 2). The (1, 2) term must be of the type, J ∧ α, where

J is the Kähler two form and α is a non-trivial one form of type (0, 1). It is easy to see

that this implies that, Gz, is of type, (1, 1), and satisfies the condition, Gz · J = 0, while,

Gz̄ can be expressed as, Gz̄ = c1Ω + c2Ω̄ + c3J . Note that, Ω · J = Ω̄ · J = 0, so that Ω, J

together define a spacelike three plane. As a result, the conditions, (3.13), (3.14), must
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still hold. Together with the condition, J · Gz , these imply that the real and imaginary

parts of Gz must be time like vectors. But this condition cannot be met for a non-zero

Gz since Vflux is spanned by two spacelike vectors, (4.8), and one null vector, v. Finally,

it is also easy to show that for the modified flux, (6.1), and nonsingular values of φ, τ , Gz

cannot vanish. Thus we conclude that for n 6= 0 there are no susy breaking solution.

In summary we have constructed a one parameter family of fluxes in this section, all

of which correspond to the same value of Nflux, (2.4). However, only one of them leads to

an allowed vacuum.

7. Duality

In this section we will study various dual descriptions of the IIB theory on K3×T 2/Z2

in the presence of flux.

One T-duality will take us to Type IIA (or Type I
′

) with O8 planes. Two T-dualities

will lead to a Type I description. Finally a further S-duality will give rise to a Heterotic

description. The dual descriptions are not (conformally) Calabi-Yau spaces, in fact they

are not even Kähler manifolds. They are related to compactifications of the Heterotic string

with Torsion, [36,22] and the more recent constructions in [23–25]. A general understanding

of such compactifications is still not available in the literature. Our discussion will parallel

that of [25], and we will use similar notation below.

The supergravity backgrounds for the three duals mentioned above can be explicitly

constructed for all IIB flux compactifications on K3× T 2/Z2. The H3 flux in the starting

theory must have two legs along the K3 and one along the T 2, see (2.7). The isometries

along both the directions of the T 2 can be then made manifest by choosing a gauge where

the two-form NS gauge potential, B, has no dependence on the two T 2 directions. One

and two T-dualities along these directions can then be explicitly carried out and the su-

pergravity backgrounds can be obtained using [37–39]. Following this it is straightforward

to carry out the S-duality as well.

However, since several moduli are fixed in the starting description, it is not always

possible to go to a region of moduli space where the sugra description is valid in the dual

theory. This problem can be avoided in cases where the moduli are only partially lifted, in

such situations the dual sugra description can sometimes be reliable. An example of such

a compactification for the T 6/Z2 case was explored in [25], similar examples for K3 × T 2

can also be constructed, but we will not elaborate on them here.
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We will also construct a superpotential in the dual theories below. It will involve the

appropriate RR and NS fluxes as well as certain “twists” in the geometry.

One comment about notation. In this section µ, ν, ... denotes all the compact direc-

tions. The two directions of the T 2 are denoted by x, y. We will carry out T-duality along

the x direction first and then along the y direction. α, β, ... will denote compact directions

other than x and α̂, β̂, ... compact directions other than x and y.

7.1. One T-duality

We carry out the T-duality along the x direction of the T 2. As was mentioned above

one can always choose a gauge in which Bxα̂ is independent of the T 2 directions.

We denote the metric of IIB theory before duality by jµν , and the metric in the IIA

theory after T-duality by gµν . The metric of the resulting manifold M′ is given by

ds2
M′ =

1

jxx
ηxηx +

1

jxx
(detxyj) dy2 + jα̂β̂dxα̂dxβ̂ (7.1)

where the one form ηx = dx−Bxα̂dxα̂, which can also be written as ηx = gxµdxµ/gxx and

detxyj = jxxjyy − j2
xy . Note that Bxα̂dxα̂ varies non-trivially along the K3. As a result

the resulting compactification is a sort of “twisted” analogue of the K3 × T 2 space 14. It

would be quite useful to have a more complete understanding of such compactifications.

In [25], it was shown that the dual compactifications could be thought of as cosets which

are generalisations of the nilmanifold. It would be interesting to ask if there is a similar

description in the present case.

Two more comments are in order at this stage. First, besides the metric, the RR

forms F4, F2, and the NS form H3, are also excited in this background. Their values can

be determined using the formulae in App.C, [38], [39], but we will not do so here. Second,

one can define a two form

ω(x) = −d(gxαdxα/gxx) . (7.2)

This is the x component of the antisymmetrised spin connection. The x direction is an

isometry of the IIA metric and ω(x) is the field strength of the Kaluza Klein gauge symmetry

associated with this isometry. It will enter our discussion of the superpotential below.

Superpotential

14 It can be shown by an explicit calculation that due to the non-trivial twist, M′ is not Ricci

flat. It follows then that it cannot be a Calabi Yau manifold.
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In writing down a superpotential in the dual theory which is the analogue of (3.1), it

is first convenient to define an almost complex structure (ACS) as follows.

Define the one-form

ηz = ηx + i
√

detxyjdy . (7.3)

The metric (7.1) can then be written as

ds2
M′ =

1

jxx
ηz η̄z̄ + ds2

K3 , (7.4)

with ds2
K3 denoting the metric over K3,

ds2
K3 = jα̂β̂dxα̂dxβ̂ . (7.5)

Consider a complex structure on K3 compatible with the metric, (7.5). Let dz1, dz2

be holomorphic one forms (in the space spanned by dxα̂, α̂, 1, · · ·4) with respect to this

complex structure. Then the required almost complex structure we use below is defined by

specifying a basis of holomorphic one forms to be ηz, dz1, dz2. A holomorphic (3, 0) form

ΩIIA can be constructed, it is

ΩIIA = Ω ∧ ηz , (7.6)

where Ω ∼ dz1 ∧ dz2 is the holomorphic (2, 0) form on K3. This ACS is analogous to that

used in [25]. While we omit the details here, the spinor conditions take a convenient form

with this choice of ACS and as a result a superpotential can also be easily constructed.

The superpotential is given by

WIIA =

∫

M′

GIIA ∧ ΩIIA (7.7)

where

GIIA =
(

F̃4(x) + gxxηx ∧ F2

)

− i
(√

gxx/gIIA
s

) (

H3 − gxxηx ∧ ω(x)

)

. (7.8)

Here we have used the definitions

F̃4 = dC3 + A1 ∧ H3 ,
[

F̃4(x)

]

αβγ
= F̃xαβγ . (7.9)

The last term of the superpotential contains a component of the spin connection which

was discussed above in (7.2). It arises from the term in the starting IIB superpotential

(3.1), proportional to H3 with one leg along the x direction.

Evidence in support for this superpotential includes the following. First, susy requires

that GIIA is of type (2, 1) with respect to the ACS defined above. This condition is obtained

by varying the superpotential (7.7). Second, the various terms in the superpotential (7.7),

correctly account for the tension of various BPS domain walls in the theory. In particular

the last term, involving the spin connection, gives the tension of a KK monopole related

to the x isometry direction.
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7.2. Two T-dualities

We can now further T-dualise along the y direction to obtain a type I compactification

with F3 flux and twists in the geometry. We denote the dual manifold as M. The metric

on M is

ds2
M =

(

ĵxxη̂xη̂x + ĵyy η̂y η̂y + 2ĵxyη̂
xη̂y

)

+ ds2
K3 (7.10)

with

ĵxx =
jyy

detxyj
, ĵyy =

jxx

detxyj
, ĵxy = − jxy

detxyj
, (7.11)

and

η̂x = dx +
ĵyy

detxy ĵ

(

ĵxxĵ(x) − ĵxy ĵ(y)

)

, (7.12)

η̂y = dy +
ĵxx

detxy ĵ

(

ĵyy ĵ(y) − ĵxy ĵ(x)

)

(7.13)

Note, we use ‘ˆ’ to denote quantities in the type I theory.

A superpotential can be defined in this case as well. The metric (7.10) can be rewritten

as

ds2
M = ĵxxη̂z ˆ̄η

z̄
+ ds2

K3 (7.14)

An almost complex structure can be now be specified by defining one holomorphic one-form

to be

η̂z = η̂x + τ̂ η̂y ,

and two additional holomorphic one-forms to be compatible with the complex structure of

K3.

A (3, 0) form Ω̂ is then defined by

Ω̂ = Ω ∧ η̂z . (7.15)

where Ω is the holomorphic two-form of K3.

The resulting superpotential is

Ŵ =

∫

M

Ĝ ∧ Ω̂ (7.16)

where
Ĝ =

(

ĵxxη̂x + ĵxy η̂y
)

∧ F̂3(y) −
(

ĵxy η̂x + ĵyyη̂
y
)

∧ F̂3(x)

−
(

i

gI
s

)

√

detxy ĵ
(

ĵxxη̂x ∧ dĵ(x) + ĵyy η̂y ∧ dĵ(y)

) (7.17)

34



Some additional notation used in the above formula is as follows. The one and two forms

ĵ(x), Ĥ3(x), F̂3(x) are given as

ĵ(x) =
1

ĵxx

ĵxα̂dxα̂ ,
[

F̂3(x)

]

α̂β̂
=

[

F̂3

]

xα̂β̂
, (7.18)

and similar expressions for the quantities carrying the index ‘y’. Also we have used the

definition

detxy ĵ =
(

ĵxxĵyy − ĵ2
xy

)

, (7.19)

and the type I string coupling gI
s = eφI 15.

7.3. Heterotic Dual

Making a further S-duality we obtain heterotic theory on a manifold Mhet whose

metric (in string frame) is given by

ds2
het = jh

xxηz
hη̄z̄

h + ghet
s ds2

K3 . (7.20)

We denote the metric components in the heterotic theory with a superscript ‘ h ’ , which

are related to the type I metric by a factor of the string coupling ghet
s :

ĵµν =
1

ghet
s

jh
µν .

We choose an almost complex structure in the heterotic theory, which agrees with the

one described above for the Type I case. The corresponding (3, 0) form is then given by

Ω̂, (7.15), and the superpotential is the same as (7.16). Expressed in heterotic language

this takes the form,

Whet =

∫

Mhet

Ghet ∧ Ω̂ (7.21)

with
Ghet =

(

jh
xxη̂x + jh

xy η̂y
)

∧ H3(y) −
(

jh
xy η̂x + jh

yyη̂
y
)

∧ H3(x)

− i
√

detxyjh
(

jh
xxη̂x ∧ djh

(x) + jh
yy η̂y ∧ djh

(y)

)

.
(7.22)

15 Note that The general expression for the superpotential in [25] after T-dualizing along

both x and y appears with terms containing ˆ̃F 5(xy) , F̂1 and Ĥ3 but are absent here in the

superpotential (7.16) . This is due to the fact that terms containing the above quantities arise

from [F3]α̂β̂γ̂
, [F3]xyα̂

, [H3]α̂β̂γ̂
of the original type IIB theory. However they are projected out in

K3 × T 2/Z2 compactification of IIB.
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The two forms H3(x), H3(y), above are given by

[

H3(x)

]

α̂β̂
= [H3]xα̂β̂ ,

[

H3(y)

]

α̂β̂
= [H3]yα̂β̂ . (7.23)

Before closing let us note that heterotic compactifications with H3 flux have been

considered in [40,36,22,33,24]. The ACS we have defined above is not integrable in general.

However, the heterotic compactifications, and also the Type I models of the preceding

section, are in fact complex manifolds, as can be shown from the analysis in [36], and

admit an integrable ACS. It would be interesting to ask what form the superpotential

takes in terms of this complex structure.

8. The T 6/Z2 orientifold

In this section we will discuss two aspects of flux compactifications on T 6/Z2. §8.1

presents general susy preserving solutions for the T 6/Z2 compactification, in analogy with

the discussion in §3 for K3 × T 2/Z2. §8.2 deals with a family of susy breaking solutions,

similar to the one in §6 with complex structure stabilised at extreme values for large flux.

8.1. General Susy Solutions

Here we discuss general susy preserving solutions in the T 6/Z2 model. We will build

on the discussion in [9]. The essential idea is similar to §3 above. The requirements on the

flux for the existence of susy solutions can be stated in terms of simultaneous solutions to

two polynomial equations. Once these requirements are met the complex structure moduli

can be determined in terms of the flux.

We start with the superpotential,

W =

∫

G3 ∧ Ω3. (8.1)

We will use the notation of [9], below. In particular,

1

(2π)2α′
F3 = a0α0 + aijαij + bijβ

ij + b0β
0

1

(2π)2α′
H3 = c0α0 + cijαij + dijβ

ij + d0β
0,

(8.2)
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where the three forms αij and βij are defined in [9]. Susy solutions satisfy the conditions

W = ∂iW = 0, where i denotes all complex structure moduli. It was shown in Sec. §4.4

of [9], that the equation ∂τ ijW = 0 can be used to solve for τ ij in terms of φ as

(

cof(τ − Ã)
)

ij
=

(

cofÃ
)

ij
+ B̃ij (8.3)

where we define A0 = a0 −φc0 , Aij = aij −φcij and Ãij = Aij/A0 and similar definitions

for B0, Bij and B̃ij . Solving (8.3) for τ ij we get

τ ij = Ãij +
(cofµ)

ij

√

det(µ)
(8.4)

where we define µij as

µij =
(

cofÃ
)

ij
+ B̃ij (8.5)

Thus once we know φ for a given flux we can determine τ ij . The conditions for φ are

obtained from the remaining two equations W = 0 and ∂φW = 0. Combining W = 0 and

∂τ ijW = 0 gives a quartic for φ

B0detA − A0detB + (cofA)ij(cofB)ij +
1

4
(A0B0 + AijBij)

2 = 0 (8.6)

The derivation of this equation is given in App. B of [9]. In addition we need ∂φW to be

zero, which combined with W = 0 gives

a0 det(τ) − aij(cofτ)ij − bijτ
ij − b0 = 0

Eliminating τ ij from above we get

∆ +
1√

det µ
(cofµ)ijΣij = 0 (8.7)

where Σij and ∆ are defined as

Σij ≡ 1

3
a0

(

cofÃ
)

ij
+

1

3
a0B̃ij − ǫikmǫjlnaklÃmn − bij (8.8)

and

∆ ≡ ÃijΣij +
2

3
ÃijB̃ij − aijB̃ij − b0 (8.9)

We take the square of (8.7) to obtain a polynomial in φ :

(

Σij(cofµ)ij
)2 − det(µ)∆2 = 0 (8.10)
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The equations (8.6) and (8.10) can be rewritten as

F4(φ) ≡ f̂0 + f̂1φ + f̂2φ
2 + f̂3φ

3 + f̂4φ
4 = 0 (8.11)

and

G12(φ) ≡ ĝ0 + ĝ1φ + ĝ2φ
2 + ... + ĝ12φ

12 = 0 . (8.12)

It is straightforward to obtain the coefficients f̂i and ĝi. They are determined in terms of

the integers a0, aij, b0, bij · · · appearing in the expressions of F3 and H3 as given in (8.2).

However, the expressions are quite lengthy and hence and we will not write the precise

formulae for them here.

As before, in order to have a nonsingular solution, the polynomials F4(φ) and G12(φ)

must admit a common quadratic (say W2(φ)) . Thus,

F4(φ) = F2(φ)W2(φ) , G12(φ) = G10(φ)W2(φ) (8.13)

where F2(φ) and G10(φ) are polynomials in φ with coefficients ui and vi respectively. Note

that here the subscripts in F ,G and W denotes the degree of the polynomial.

The general solution can be stated in terms of a 15× 14 matrix M̂ defined interms of

the quantities f̂i and ĝi as

M̂ =





























f̂0 0 0 . . . 0 0 −ĝ0 0 0
f̂1 f̂0 0 . . . 0 0 −ĝ1 −ĝ0 0
f̂2 f̂1 f̂0 . . . 0 0 −ĝ2 −ĝ1 −ĝ0

. . . . . . . .

. . . . . . . .

. . . . . . . .
0 0 0 . . . f̂3 f̂2 −ĝ12 −ĝ11 −ĝ10

0 0 0 . . . f̂4 f̂3 0 −ĝ12 −ĝ11

0 0 0 . . . 0 f̂4 0 0 −ĝ12





























(8.14)

and a column vector X defined as

X =



























u0

u1

u2

v0

v1

.

.

.
v12



























(8.15)
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The column vector must satisfy

M̂X = 0 (8.16)

In addition the solution obtained for φ must be complex. The coefficients ŵi in the poly-

nomial W2(φ) can be obtained from (8.13) in terms of ui and vi, which themselves are

solved in terms of f̂i , ĝi from (8.15) . They must obey

ŵ2
1 < 4ŵ0ŵ2

In addition the imaginary part of τij as given in (8.4) also must be non zero.

8.2. Large Flux on Tori

Here we construct a one parameter family of flux for the T 6/Z2 case analogous to the

one discussed in the §6 for K3×T 2/Z2. The family consists of fluxes unrelated by duality,

but with a fixed, Nflux, (2.4). As in §6, we find there is an allowed vacuum for only one

value of the parameter.

We will consider tori of the form T 4 × T 2 and turn on three-form flux with two legs

along the T 4 and one leg along the T 2 (this is consistent with the Z2 orientifolding). The

discussion of §6 can now be largely carried over to this case with the T 4 replacing K3.

As a concrete example, we consider the case where the three-flux takes the form

1

(2π)2α′
F3 = 2e1 ∧ dx + 2e2 ∧ dy

1

(2π)2α′
H3 = −2e2 ∧ dx + 2e1 ∧ dy,

(8.17)

where in our notation 0 ≤ x, y ≤ 1 are coordinate on the T 2 and e1, e2, · · · are two -

forms on T 4 as discussed in App.A. In the notation of §3, §6, this corresponds to taking,

αx = βy = 2e1, and, αy = −βx = 2e2.

It is straightforward to show that in this case a susy preserving solution exists where

φ = τ = i, with τ being the complex structure of the T 2, and, where the T 4 = T 2 × T 2

with the complex structure of both T 2’s being stabilised at the same point in moduli space,

τ1 = τ2 = i. The Primitivity condition can also then be easily met by a Kähler two-form,

J =
∑

i

gīidzidzī, (8.18)

where i = 1, · · ·3, refers to the three two-tori respectively .

39



Now consider the vector

v = e3 + e4, (8.19)

valued in H2(T 4,Z) (again we refer the Reader to App.A for definitions). It is null, i.e.,

v · v = 0, and orthogonal to e1, e2.

We can now modify the flux vectors as follows. Keep, αy, βx, βy, the same and take

αx → αx + 2nv. (8.20)

The (2, 1) condition can then be met if φ = τ = i and Ω (the holomorphic two-form of T 4

) meets the condition

Ω = (αx − φβx)τ − (αy − φβy). (8.21)

The primitivity condition however cannot be satisfied. As a result no susy preserving

solution exists for the modified flux, (8.20). An argument quite similar to the one in §6
also shows that no supersymmetry breaking solution exists. Hence we conclude that for

the modified flux, (8.20), there are are no allowed vacua.

9. Discussion

In this paper we have discussed flux compactifications of IIB string theory. Our

emphasis was on the K3 × T 2/Z2 compactification, we also discussed some aspects of the

T 6/Z2 case.

There are several open questions which remain.

The K3 × T 2/Z2 compactification has D7-branes present in it. Our analysis did

not consider the effects of exciting the gauge fields on these seven branes. It would be

interesting to do so, both in the supersymmetry conditions and the resulting superpotential.

We mentioned in §2.4, that generically one expects the moduli associated with the locations

of the D7-branes on the T 2 to be lifted, once flux is turned on. With gauge fields excited

one expects this to continue to be true. For example, the D7-branes can acquire D5-brane

charge, if the gauge field which is excited has non-trivial first Chern class. In the presence

of a magnetic F3 flux the seven branes will then experience a force along the T 2 directions.

We formulated in our discussion above the conditions which must be satisfied by the

flux for susy preserving solutions to exist. It would be interesting to determine how many

distinct fluxes (unrelated by duality) there are which meet these conditions. In particular,

one would like to know if this number is finite or infinite and if the fluxes can be made
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large subject to the restriction of total D3-brane charge being held fixed. We saw above

by constructing explicit examples that this restriction does allow for an infinite number of

distinct fluxes, and therefore to large flux. However, even allowing for susy breaking we

found that only one set of fluxes, in the one parameter family we constructed, gave rise

to a stable vacuum. In fact, so far, by varying the flux, we have been unable to construct

am infinite family of vacua with broken or unbroken susy. It will be useful to settle this

issue conclusively in the future. This will be a useful step in addressing the question of

how may N = 1 vacua there are in string theory.

The next logical step in the study of flux vacua, in continuation of [9] and this paper,

would be to consider (orientifolds of) Calabi-Yau threefolds with flux. At the moment, we

do not see how to directly generalise the techniques devised for K3 to Calabi Yau threefolds.

Perhaps, the best approach might be to consider a simple case with few complex structure

moduli and explicitly evaluate the superpotential 16.

We examined some dual theories related to the flux compactifications of IIB string

theory above, and saw that they are not Calabi-Yau spaces. We also obtained a super-

potential in these dual descriptions. Much more can be done along this direction. For

example, one would like to construct examples which cannot be related to Calabi-Yau

compactifications via duality.

Finally, from the viewpoint of moduli stabilisation, the most serious limitation of these

models is that the volume modulus (in the IIB description) is not stabilised. It would

be illuminating to consider various additional effects which could lift this direction. Non-

perturbative gauge dynamics on the world volume of D7-branes, present in the K3×T 2/Z2

example considered above, might provide a tractable example.
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Appendix A. Γ3,19 Lattice

In this appendix we give some details about the integral cohomology of K3. Our

conventions for orientation etc on K3 × T 2/Z2 are also explained. Towards the end we

discuss the four-torus, T 4, this is relevant to the discussion in §8.2.

The integral cohomology H2(K3,Z) has the structure of an even self-dual lattice of

Γ3,19 of signature (3, 19). We can choose a basis {ei} for Γ3,19 such that the inner products

of the basis vectors 17

gij = (ei, ej) =

∫

K3

ei ∧ ej (A.1)

is given by the following matrix

gij =





H3,3 0 0
0 −E8 0
0 0 −E8



 (A.2)

where the matrix H3,3 is defined as

H3,3 =















0 1 0 0 0 0
1 0 0 0 0 0
0 0 0 1 0 0
0 0 1 0 0 0
0 0 0 0 0 1
0 0 0 0 1 0















(A.3)

and E8 is the Catran matrix of E8 algebra :

E8 =























2 −1 0 0 0 0 0 0
−1 2 −1 0 0 0 0 0

0 −1 2 −1 0 0 0 −1
0 0 −1 2 −1 0 0 0
0 0 0 −1 2 −1 0 0
0 0 0 0 −1 2 −1 0
0 0 0 0 0 −1 2 0
0 0 −1 0 0 0 0 2























. (A.4)

The basis vectors (e1 , e2 , · · · e6) span a subspace of H2(K3,Z) (which we denote as

Γ3,3) with the metric given by H3,3. Note that we can make a change of basis such that

H3,3 = 2η3,3 with η3,3 = diag(1, 1, 1,−1,−1,−1) where as E8 remains the same.

17 We denote the inner product of lattice vectors by a dot i.e. (α, β) = α · β.
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Let γ2 be an element of the integral homology H2(K3,Z). Integrating an arbitrary

two form α2 ∈ H2(K3,Z) over γ2 results in an integer. In particular we have

∫

γ2

ei ∈ Z . (A.5)

We turn on H3 and F3 fluxes over three cycles which are of the type γ2 × γ1 where γ2 is

defined earlier and γ1 ∈ H1(T
2/Z2,Z). Integrating ei ∧ dx and ei ∧ dy over γ2 × γ1 results

in integers if γ1 is a ‘full cycle’ of T 2. However if γ1 is a ‘half cycle’ of T 2 (a cycle which

is closed in T 2/Z2 but not in T 2) then the result is a half integers. It was pointed out by

Frey and Polchinski [10] that in order to satisfy the Dirac quantization conditions in these

cases one needs to turn on fluxes due to exotic orientifold planes. As in [9], here we avoid

these complications by choosing the fluxes corresponding to the lattice vectors with even

coefficients in Γ3,19.

It is helpful to describe the cohomology basis above in detail in the T 4/Z2 limit of K3.

The E8 ×E8 lattice vectors correspond to the 16 blow up modes of the orbifold. Choosing

coordinates xi, yi, 0 ≤ xi, yi ≤ 1, i = 1, 2, for the T 4, a basis of Z2 invariant two-forms is

given by

e1 =
√

2
(

dx1 ∧ dx2 − dy1 ∧ dy2
)

e2 =
√

2
(

dx1 ∧ dy2 − dx2 ∧ dy1
)

e3 =
√

2
(

dx1 ∧ dy1 + dx2 ∧ dy2
)

e4 =
√

2
(

dx1 ∧ dx2 + dy1 ∧ dy2
)

e5 =
√

2
(

dx1 ∧ dy2 + dx2 ∧ dy1
)

e6 =
√

2
(

dx1 ∧ dy1 − dx2 ∧ dy2
)

.

(A.6)

With a choice of normalization,

∫

T 4/Z2

dx1 ∧ dx2 ∧ dy1 ∧ dy2 = −1

2
, (A.7)

these obey the conditions,

(e1, e1) = (e2, e2) = (e3, e3) = 2

(e4, e4) = (e5, e5) = (e6, e6) = −2,

with all other inner products being zero. We see then that e1, ..., e6 form a basis for Γ3,3.

For completeness let us also note that in the notation of this paper, our choice of

orientation on the T 2 is given by

∫

T 2

dx ∧ dy = −1 . (A.8)
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Finally we discuss the T 4 case. The six one forms e1, · · · e6 defined above (without

the
√

2 prefactor in normalisation), (A.6), form a basis of H2(T 4,Z). We can define an

inner product in this vector space analogous to (A.1). Holomorphic coordinates on T 4 can

be defined by

zi = xi + τ i
jy

j, i = 1, 2. (A.9)

The complex structure is completely specified by the period matrix τ i
j . The holomorphic

two-form Ω = λ(dz1∧dz2) (λ is a constant) can be expressed in terms of the basis e1, · · · e6

as follows:

Ω =
1

2
(1 − detτ)e1 +

1

2
(τ2

2 + τ1
1 )e2 +

1

2
(τ2

1 − τ1
2 )e3

1

2
(1 + detτ)e4 +

1

2
(τ2

2 − τ1
1 )e5 +

1

2
(τ2

1 + τ1
2 )e6.

(A.10)

Appendix B. Solving the Quartic and Quintic Polynomials

In this appendix we discuss in more detail the conditions leading to the two polyno-

mials, (3.21a) and (3.21b), having a common quadratic factor.

The polynomials are given by

P (φ) ≡ p1φ
5 + p2φ

4 + p3φ
3 + p4φ

2 + p5φ + p6 = 0 (B.1a)

Q(φ) ≡ q1φ
4 + q2φ

3 + q3φ
2 + q4φ + q5 = 0 , (B.1b) .

where the coefficients pi and qi are

p1 = − γxxβ2
xy + βxxβxyγxy − γyyβ2

xx ,

p2 =αxxβ2
xy + β2

xxαyy − 2αxyβxyβxx + 4γxxγyyβxx − βxxγ2
xy ,

p3 = − 4γ2
xxγyy − 2αxxβxxγyy − 4γxxβxxαyy + 2γxxαxyβxy

+ γxxγ2
xy − αxxβxyγxy + 3αxyβxxγxy ,

p4 = − 2α2
xyβxx + 4γ2

xxαyy + 2αxxβxxαyy + 4αxxγxxγyy − 4γxxαxyγxy ,

p5 = − α2
xxγyy + 3γxxα2

xy − 4αxxγxxαyy + αxxαxyγxy ,

p6 =α2
xxαyy − αxxα2

xy .

(B.2)

and
q1 = β2

xy − βxxβyy ,

q2 = 2γxxβyy − 2βxyγxy + 2βxxγyy ,

q3 = −αyyβxx + 2αxyβxy − αxxβyy − 4γxxγyy + γ2
xy ,

q4 = 2αyyγxx + 2αxxγyy − 2αxyγxy ,

q5 = α2
xy − αxxαyy

(B.3)
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Here we have used the notation

αij ≡ αi.αj , βij ≡ βi.βj , (B.4)

with i, j = {x, y}, and

γxx ≡ αx.βx , γyy ≡ αy.βy , and γxy ≡ αx.βy + αy.βx . (B.5)

Assume the quadratic factor of the form

W (φ) ≡ w1φ
2 + w2φ + w3

is the common factor of P (φ) and Q(φ) . Then

P (φ) = (r1φ
3 + r2φ

2 + r3φ + r4)W (φ) (B.6a)

Q(φ) = (s1φ
2 + s2φ + s3)W (φ) (B.6b)

for some ri and si . This gives in particular

(s1φ
2 + s2φ + s3)P (φ) = (r1φ

3 + r2φ
2 + r3φ + r4)Q(φ) (B.7)

Equating the coefficients of φn from both sides we get

p1s1 − q1r1 = 0

(p1s2 + p2s1) − (q1r2 + q2r1) = 0

(p1s3 + p2s2 + p3s1) − (q1r3 + q2r2 + q3r1) = 0

(p2s3 + p3s2 + p4s1) − (q1r4 + q2r3 + q3r2 + q4r1) = 0

(p3s3 + p4s2 + p5s1) − (q2r4 + q3r3 + q4r2 + q5r1) = 0

(p4s3 + p5s2 + p6s1) − (q3r4 + q4r3 + q5r2) = 0

(p5s3 + p6s2) − (q4r4 + q5r3) = 0

p6s3 − q5r4 = 0

(B.8)

Define the matrix

M ≡























p1 0 0 −q1 0 0 0
p2 p1 0 −q2 −q1 0 0
p3 p2 p1 −q3 −q2 −q1 0
p4 p3 p2 −q4 −q3 −q2 −q1

p5 p4 p3 −q5 −q4 −q3 −q2

p6 p5 p4 0 −q5 −q4 −q3

0 p6 p5 0 0 −q5 −q4

0 0 p6 0 0 0 −q5























(B.9)
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And the column vector

X =



















s1

s2

s3

r1

r2

r3

r4



















(B.10)

Then (B.8), can be restated as

M · X = 0 (B.11)

which is eq. (3.23). Thus the condition for the two polynomials sharing a common

quadratic factor is that a non-zero vector X exists satisfying (B.10).

In terms of the components of X , we find, from (B.6b), by comparing powers of φ that

W (φ) is given by (3.24),(3.25).

Appendix C. Duality Maps

Here we use the notation of [25] . In particular, we define the four form field strength

F̃4 = dC3 + A1 ∧ F3 in IIA theory and the five form field strength

F̃5 = dC4 −
1

2
C2 ∧H3 +

1

2
B2 ∧ F3 .

We denote the T dual direction as x and also we define the one forms

j(x) =
1

jxx
jxαdxα , g(x) =

1

gxx
gxαdxα (C.1)

and the exterior derivative

ω(x) = −dg(x) . (C.2)

In addition Fn(x) denotes an n − 1 form whose components are given by:

[Fn(x)]i1,···in−1
= [Fn]xi1···in−1

. (C.3)
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The Neveu-Schwarz fields transform as

gxx =
1

jxx

gxα = −Bxα

jxx

gαβ = jαβ − 1

jxx
(jxαjxβ − BxαBxβ)

Bxα = −jxα

jxx

Bαβ = Bαβ − 1

jxx
(jxαBxβ − Bxαjxβ)

gIIA
s =

gIIB
s√
jxx

(C.4)

Here the left hand refers to fields in the IIA theory and the right hand side to fields in the

IIB theory. For the three form field strength, H3 this takes the form,

H3(x) = dj(x)

H3 = H3 −H3(x) ∧ j(x) − B(x) ∧ dj(x)

(C.5)

The Ramond fields transform as

F2(x) = F1

F2 = F̃3(x) − B(x) ∧ F1

F̃4(x) = F̃3 − j(x) ∧ F̃3(x)

F̃4 = F̃5(x) − B(x) ∧
(

F̃3 − j(x) ∧ F̃3(x)

)

(C.6)

In the formulae above, a field strength with and without a leg along the x direction

are denoted as Fn(x), and Fn respectively.

The inverse of these expressions is given by

jxx =
1

gxx

jxα = −Bxα

gxx

jαβ = gαβ − 1

gxx
(gxαgxβ − BxαBxβ)

Bxα = −gxα

gxx

Bαβ = Bαβ − 1

gxx
(gxαBxβ − Bxαgxβ)

gIIB
s =

gIIA
s√
gxx

(C.7)
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H3(x) = −ω(x)

H3 = H3 + ω(x) ∧ B(x) − g(x) ∧ H3(x)

(C.8)

and
F1 = F2(x)

F̃3(x) = F2 − gx ∧ F2(x)

F̃3 = F̃4(x) − B(x) ∧
(

F2 − gx ∧ F2(x)

)

F̃5(x) = F̃4 − g(x) ∧ F̃4(x)

(C.9)

The type I theory is equivalent to the heterotic theory by a S duality under which the

fields are related as

ghet
s =

1

gI
s

jh
µν =

1

gI
s

ĵµν

H3 = F̂3 .

(C.10)

Here we denoted the metric in heterotic theory as jh
µν and the NS field strength H3 = dB2.

ghet
s heterotic string coupling. Similarly, we denoted the type I metric and RR field strength

with a ‘ˆ’ where as the string coupling is denoted by a superscript I.
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