8 research outputs found

    Atividade microbiana de solo e serapilheira em áreas povoadas com Pinus elliottii e Terminalia ivorensis Microbial activity of soil and litter in areas with forest stands of Pinus elliottii e Terminalia ivorensis

    Get PDF
    No Brasil, as espécies Pinus elliottii e Terminalia ivorensis vêm sendo indicadas para reflorestamento. No entanto, pouco se sabe sobre as características ecológicas destas florestas, o ciclo de nutrientes e suas conseqüências sobre a produtividade e sustentabilidade sob condições tropicais. Visando melhor compreender a dinâmica do C nestes ecossistemas, objetivou-se neste trabalho avaliar a atividade microbiana do solo, serapilheira e da mistura solo + serapilheira em povoamentos florestais de P. elliottii e T. ivorensis. Amostras de solos e serapilheira foram incubadas e a atividade microbiana avaliada por meio da evolução de CO2. Ao final da incubação, a respiração acumulada foi superior para a serapilheira de T. ivorensis. Os demais substratos com serapilheira não diferiram entre si, mas diferiram do solo sob T. ivorensis, que, por sua vez, diferiu do solo sob P. elliottii. Nas condições testadas, a incorporação de solo à serapilheira, bem como a incorporação alternada de solo de um povoamento à serapilheira de outro, não promoveu aumentos significativos na respiração da serapilheira, mostrando que as características químicas da própria serapilheira alteram mais fortemente sua velocidade de degradação que as características químicas e microbianas do solo onde é incorporada.<br>In Brazil, the species Pinus elliottii and Terminalia ivorensis are being recommended for reforestation. However, little is known about the ecological characteristics of such forests, the nutrient cycle and possible consequences on yields and sustainability under tropical conditions. For a better understanding of the C dynamic in these ecosystems, this study aimed to evaluate the microbial activity of soil, litter, and the mixture of soil + litter in forest stands of P. elliottii and T. ivorensis. Samples of soil, litter and mixture were incubated and the microbial activity was evaluated on the basis of CO2 released. At the end of incubation, the accumulated respiration was significantly higher in litter of T. ivorensis. The other substrates with litter did not differ from each other, but differed from the soil under T. ivorensis, which in turn differed from soil under P. elliottii. In the tested conditions, the soil incorporation to litter, as well as the alternate incorporation of soil from one forest with the litter of another did not cause a significant increase in litter respiration. This indicates that the influence of the chemical characteristics of the litter itself on degradation speed is stronger than the chemical and microbiological characteristics of the soil where it is incorporated

    Brazilian Flora 2020: Leveraging the power of a collaborative scientific network

    No full text
    International audienceThe shortage of reliable primary taxonomic data limits the description of biological taxa and the understanding of biodiversity patterns and processes, complicating biogeographical, ecological, and evolutionary studies. This deficit creates a significant taxonomic impediment to biodiversity research and conservation planning. The taxonomic impediment and the biodiversity crisis are widely recognized, highlighting the urgent need for reliable taxonomic data. Over the past decade, numerous countries worldwide have devoted considerable effort to Target 1 of the Global Strategy for Plant Conservation (GSPC), which called for the preparation of a working list of all known plant species by 2010 and an online world Flora by 2020. Brazil is a megadiverse country, home to more of the world's known plant species than any other country. Despite that, Flora Brasiliensis, concluded in 1906, was the last comprehensive treatment of the Brazilian flora. The lack of accurate estimates of the number of species of algae, fungi, and plants occurring in Brazil contributes to the prevailing taxonomic impediment and delays progress towards the GSPC targets. Over the past 12 years, a legion of taxonomists motivated to meet Target 1 of the GSPC, worked together to gather and integrate knowledge on the algal, plant, and fungal diversity of Brazil. Overall, a team of about 980 taxonomists joined efforts in a highly collaborative project that used cybertaxonomy to prepare an updated Flora of Brazil, showing the power of scientific collaboration to reach ambitious goals. This paper presents an overview of the Brazilian Flora 2020 and provides taxonomic and spatial updates on the algae, fungi, and plants found in one of the world's most biodiverse countries. We further identify collection gaps and summarize future goals that extend beyond 2020. Our results show that Brazil is home to 46,975 native species of algae, fungi, and plants, of which 19,669 are endemic to the country. The data compiled to date suggests that the Atlantic Rainforest might be the most diverse Brazilian domain for all plant groups except gymnosperms, which are most diverse in the Amazon. However, scientific knowledge of Brazilian diversity is still unequally distributed, with the Atlantic Rainforest and the Cerrado being the most intensively sampled and studied biomes in the country. In times of “scientific reductionism”, with botanical and mycological sciences suffering pervasive depreciation in recent decades, the first online Flora of Brazil 2020 significantly enhanced the quality and quantity of taxonomic data available for algae, fungi, and plants from Brazil. This project also made all the information freely available online, providing a firm foundation for future research and for the management, conservation, and sustainable use of the Brazilian funga and flora
    corecore