729 research outputs found
Estudo da interação genótipo-ambiente para a característica peso ao sobreano de bovinos da raça Canchim.
O objetivo deste trabalho foi estudar a presença de interação genótipo-ambiente (IGA) em bovinos Canchim, por meio de correlações genéticas, pela abordagem bayesiana e por um modelo animal, entre os pesos ao sobreano (PS) de 4 regiões distintas do Brasil. O modelo de análise estatística multicaracterística incluiu os efeitos de grupo de contemporâneos, idade do animal ao sobreano, como covariável, além dos efeitos genéticos aditivos diretos e residuais. As herdabilidades nas 4 regiões foram de baixas a moderadas magnitudes, no intervalo [0,21-0,29]. As correlações genéticas entre as 4 regiões variaram de baixa a moderada magnitude, sugerindo a presença da IGA. Os resultados evidenciaram que a expressão fenotípica do PS dependeu do ambiente em que foi medido e que os genótipos dos animais foram reordenados nas diferentes regiões.Resumos na seguinte fonte: Archivos Latinoamericano de Produccion Animal, v. 15, (Supl.1), p. 343, 2007
Genotype × environment interaction for long-yearling weight in Canchim cattle quantified by reaction norm analysis.
The objective of this study was to investigate the presence of genotype × environment interactions (G×E) for long-yearling weight in Canchim cattle (5/8 Charolais + 3/8 zebu) in Brazil using reaction norms (RN). The hierarchical RN model included the fixed effect of age of the animal (linear coefficient) and random effects of contemporary groups and additive animal genetic intercept and slope of the RN and contemporary group effects as random effects. Contemporary groups as the most elemental representation of management conditions in beef cattle were chosen to represent the environmental covariate of the RN. The deviance information criteria demonstrated that a homoskedastic residual RN model provided a better data fit compared with a heteroskedastic counterpart and with a traditional animal model, which had the worst fit. The environmental gradient for long-yearling weight based on contemporary group effects ranged from ?105 to 150 kg. The additive direct variance and heritability estimates increased with increasing environmental gradient from 74.33 ± 22.32 to 1,922.59 ± 258.99 kg2 and from 0.08 ± 0.02 to 0.68 ± 0.03, respectively. The high genetic correlation (0.90 ± 0.03) between the intercept and the slope of the RN shows that animals with the greatest breeding values best responded to environmental improvement, characterizing scale effect as the source of G×E for long-yearling weight. The phenotypic plasticity demonstrated by the slope of the RN of the animal indicates the possibility to change genotype expression along the environmental gradient through selection. The results demonstrate the importance of accounting for G×E in the genetic evaluation of this population
Hearing What You Cannot See: Acoustic Vehicle Detection Around Corners
This work proposes to use passive acoustic perception as an additional
sensing modality for intelligent vehicles. We demonstrate that approaching
vehicles behind blind corners can be detected by sound before such vehicles
enter in line-of-sight. We have equipped a research vehicle with a roof-mounted
microphone array, and show on data collected with this sensor setup that wall
reflections provide information on the presence and direction of occluded
approaching vehicles. A novel method is presented to classify if and from what
direction a vehicle is approaching before it is visible, using as input
Direction-of-Arrival features that can be efficiently computed from the
streaming microphone array data. Since the local geometry around the
ego-vehicle affects the perceived patterns, we systematically study several
environment types, and investigate generalization across these environments.
With a static ego-vehicle, an accuracy of 0.92 is achieved on the hidden
vehicle classification task. Compared to a state-of-the-art visual detector,
Faster R-CNN, our pipeline achieves the same accuracy more than one second
ahead, providing crucial reaction time for the situations we study. While the
ego-vehicle is driving, we demonstrate positive results on acoustic detection,
still achieving an accuracy of 0.84 within one environment type. We further
study failure cases across environments to identify future research directions.Comment: Accepted to IEEE Robotics & Automation Letters (2021), DOI:
10.1109/LRA.2021.3062254. Code, Data & Video:
https://github.com/tudelft-iv/occluded_vehicle_acoustic_detectio
Estimation of vegetation biophysical parameters in grasslands and crops in Chile through hemispheric digital photography by a GoPro camera
Revista oficial de la Asociación Española de Teledetección[EN] The estimation of the biophysical parameters of vegetation such as LAI (Leaf Area Index), FAPAR (Fraction of Absorbed Photosynthetically Active Radiation) and FCOVER (Fraction of Green Vegetation) have many climatic, hydrologic, ecosystem and silvo-agricultural applications. Despite the various satellite products that estimate these parameters continuously and globally, it’s necessary to continue generating in situ estimations to validate these remote data. It’s in this context where Digital Hemispheric Photography (DHP) technique stands out as being one of the most accurate an adaptable to operate continuously with diverse photographic equipment and field scenarios. The objective of this paper is to estimate effective LAI (LAIeff), true LAI (LAItrue), FAPAR and FCOVER through the DHP method on several agricultural land covers in Chile, between the years 2015 and 2016 using a GoPro camera and the CAN-EYE software to process hemispheric photographs. The results obtained were initially compared with those provided by a CANON EOS 6D camera mounted together with a SIGMA 8mm F3.5-EX DG fisheye lens and subsequently with satellite products provided by the Copernicus Global Land service, derived from PROBA-V mission at 333 m2 spatial resolution. The comparison between the CANON and GoPro shows similar values and R2 over 0,72 for all parameters. The comparison with PROBA-V resulted in values over 0,52 of R2 for the parameters, and similar multitemporal patterns. It’s concluded that it’s possible to estimates LAIeff, FAPAR and FCOVER like other fish eyes cameras. Concerning PROBA-V, except for FAPAR, the estimates with the GoPro do not show much correlation. In both campaigns significant discrepancies were observed in the LAItrue, which could be related to the calculation of CAN-EYE canopy clumping with the characteristics of the camera itself.[ES] La estimación de los parámetros biofísicos de la vegetación como el LAI (Leaf Area Index, FAPAR (Fraction of Absorbed Photosynthetically Active Radiation) y FCOVER (Fraction of Green Vegetation) tienen una gran cantidad de aplicaciones climáticas, hidrológicas, ecosistémicas y en sistemas silvoagropecuarios. A pesar de los diversos productos satelitales que estiman estos parámetros de forma continua y global, es necesario seguir generando estimaciones in situ para validar estos datos remotos. Es en este escenario en donde la técnica de Fotografía Digital Hemisférica (DHP) destaca por ser una de las más precisas y adaptables para funcionar de forma continua en diversos equipos fotográficos y escenarios de campo. El objetivo de este estudio es estimar el LAI efectivo (LAIeff), LAI verdadero (LAItrue), FAPAR y FCOVER a través del método DHP sobre diversas cubiertas agrícolas de Chile, entre los años 2015 y 2016 utilizando la cámara fotográfica GoPro y el software CAN-EYE para procesar las fotografías hemisféricas. Los resultados obtenidos se compararon inicialmente con los suministrados por una cámara CANON EOS 6D montada junto a un lente ojo de pez SIGMA 8mm F3.5-EX DG y posteriormente con productos satelitales proporcionados por el servicio Copernicus Global Land, derivado de la misión PROBA-V a 333 m2 de resolución espacial. La comparación entre las cámaras CANON y GoPro muestra estimaciones similares y valores de R2 sobre 0,72 para todos los parámetros. La comparación con PROBA-V dio lugar a valores sobre 0,52 de R2 para los parámetros y estimaciones multitemporales con patrones similares. Se concluye que con la cámara GoPro, es posible generar estimaciones de LAIeff, FAPAR y FCOVER de forma similar a otras cámaras ojos de pez. Respecto a PROBA-V, a excepción de FAPAR, las estimaciones con la GoPro no muestran mucha correlación. En ambas campañas se observaron discrepancias significativas del LAItrue lo que se podría relacionar al cálculo del agrupamiento de la canopia de CAN-EYE sobre las características propia cámara.Los autores agradecen el financiamiento parcial del proyecto Conicyt – Fondecyt Iniciación 11130359 “Estimating the Surface soil moisture at regional scale by using a synergic optical-passive microwave approach and remote sensing data”. Al Earth Observation Laboratory (EOLAB) y al proyecto IMAGINES, junto con la libre entrega de datos PROBA-V CopernicusUribe, D.; Mattar, C.; Camacho, F. (2018). Estimación de parámetros biofísicos de la vegetación en praderas y cultivos en Chile mediante fotografía digital hemisférica obtenidas por una cámara GoPro. Revista de Teledetección. (52):1-15. https://doi.org/10.4995/raet.2018.9315SWORD11552Baret, F., Camacho, F., Cernicharo, J., Lacaze, R., Weiss, M. 2013. GEOV1: LAI, FAPAR essential climate variables and FCOVER global time series capitalizing over existing products. Part1: Principles of development and production. Remote Sensing of Environment, 137, 310-329. https://doi.org/10.1016/j.rse.2012.12.027Baret, F., Hagolle, O., Geiger, B., Bicheron, P., Miras, B., Huc, M., Berthelot, B., Niño, F.,Weiss, M., Samain, O., Roujean, J.L., Leroy, M. 2007. LAI, fAPAR and fCover CYCLOPES global products derived from VEGETATION. Part 1: Principles of the algorithm. Remote Sensing of Environment, 110(3), 275-286. https://doi.org/10.1016/j.rse.2007.02.018Baret, F., Weiss, M. 2018. Gio Global Land Component - Lot I "Operation of the Global Land Component" Algorithm Theoretical Basis Document, 1-41.Baret, F., Weiss, M., Allard, D., Garrigues, S., Leroy, M., Jeanjean, H., et al., 2005. VALERI: a network of sites and a methodology for the validation of medium spatial resolution land satellite products. Remote Sensing of Environment, 76(3), 36-39.Baret, F., Weiss, M., Verger, A., Smets, B. 2016. Gio Global Land Component - ATBD. Bréda, N.J.J. 2003. Ground-based measurements of leaf area index: A review of methods, instruments and current controversies. Journal of Experimental Botany, 54(392), 2403-2417. https://doi.org/10.1093/jxb/erg263Bréda, N.J.J. 2003. Ground-based measurements of leaf area index: A review of methods, instruments and current controversies. Journal of Experimental Botany, 54(392), 2403-2417. https://doi.org/10.1093/jxb/erg263Casanova, M., Salazar, O., Seguel, O., Luzio, W. 2013. The Soils of Chile, Springer. https://doi.org/10.1007/978-94-007-5949-7Cescatti, A. 2007. Indirect estimates of canopy gap fraction based on the linear conversion of hemispherical photographs. Methodology and comparison with standard thresholding techniques. Agricultural and Forest Meteorology, 143(1-2), 1-12. https://doi.org/10.1016/j.agrformet.2006.04.009Chen, J.M., Black, T.A. 1992. Defining leaf area index for non-flat leaves. Plant, Cell & Environment, 15(4), 421-429. https://doi.org/10.1111/j.1365-3040.1992.tb00992.xConfalonieri, R., Foi, M., Casa, R., Aquaro, S., Tona, E., Peterle, M., et al. 2013. Development of an app for estimating leaf area index using a smartphone. Trueness and precision determination and comparison with other indirect methods. Computers and Electronics in Agriculture, 96, 67- 74. https://doi.org/10.1016/j.compag.2013.04.019De Bei, R., Fuentes, S., Gilliham, M., Tyerman, S., Edwards, E., Bianchini, N., Smith, J., Collins, C. 2016. Viticanopy: A free computer app to estimate canopy vigor and porosity for grapevine. Sensors, 16(4). https://doi.org/10.3390/s16040585Demarez, V., Duthoit, S., Baret, F., Weiss, M., Dedieu, G. 2008. Estimation of leaf area and clumping indexes of crops with hemispherical photographs. Agricultural and Forest Meteorology, 148(4), 644-655. https://doi.org/10.1016/j.agrformet.2007.11.015Fang, H., Liang, S., Hoogenboom, G. 2011. Integration of MODIS LAI and vegetation index products with the CSM-CERES-Maize model for corn yield estimation. International Journal of Remote Sensing, 32(4), 1039-1065. https://doi.org/10.1080/01431160903505310Fournier, R.A., Landry, R., August, N.M., Fedosejevs, G., Gauthier, R.P. 1996. Modelling light obstruction in three conifer forests using hemispherical photography and fine tree architecture. Agricultural and Forest Meteorology, 82(1-4), 47-72. https://doi.org/10.1016/0168-1923(96)02345-3Garrigues, S., Shabanov, N. V, Swanson, K., Morisette, J.T., Baret, F., Myneni, R.B. 2008. Intercomparison and sensitivity analysis of Leaf Area Index retrievals from LAI-2000, AccuPAR, and digital hemispherical photography over croplands. Agricultural and Forest Meteorology, 148(8-9), 1193-1209. https://doi.org/10.1016/j.agrformet.2008.02.014Gower, S.T., Kucharik, C.J., Norman, J.M. 1999. Direct and indirect estimation of leaf area index, fAPAR, and net primary production of terrestrial ecosystems. Remote Sensing of Environment, 70(1), 29-51. https://doi.org/10.1016/S0034-4257(99)00056-5Jonckheere, I., Fleck, S., Nackaerts, K., Muys, B., Coppin, P., Weiss, M., Baret, F. 2004. Review of methods for in situ leaf area index determination Part I. Theories, sensors and hemispherical photography. Agricultural and Forest Meteorology, 121(1-2), 19- 35. https://doi.org/10.1016/j.agrformet.2003.08.027Kross, A., McNairn, H., Lapen, D., Sunohara, M., Champagne, C. 2015. Assessment of RapidEye vegetation indices for estimation of leaf area index and biomass in corn and soybean crops. International Journal of Applied Earth Observation and Geoinformation, 34(1), 235-248. https://doi.org/10.1016/j.jag.2014.08.002Lang, M., Kuusk, A., Mõttus, M., Rautiainen, M., Nilson, T. 2010. Canopy gap fraction estimation from digital hemispherical images using sky radiance models and a linear conversion method. Agricultural and Forest Meteorology, 150(1), 20-29. https://doi.org/10.1016/j.agrformet.2009.08.001Latorre, C., Camacho, F., Mattar, C., Santamaría-Artigas, A., Leiva-Büchi, N., Lacaze, R. 2016. Obtención de mapas verdad-terreno de LAI, FAPAR y cobertura vegetal a partir de imágenes del satélite chileno FASat-C y medidas in-situ en la zona agrícola de Chimbarongo, Chile, para la validación de productos de satélite. Revista de Teledeteccion, 2016(47), 51- 64. https://doi.org/10.4995/raet.2016.5691Li, W., Weiss, M., Waldner, F., Defourny, P., Demarez, V., Morin, D., Hagolle, O., Baret, F. 2015. A generic algorithm to estimate LAI, FAPAR and FCOVER variables from SPOT4_HRVIR and landsat sensors: Evaluation of the consistency and comparison with ground measurements. Remote Sensing, 7(11), 15494- 15516. https://doi.org/10.3390/rs71115494López-Lozano, R., Baret, F., García de Cortázar-Atauri, I., Bertrand, N., Casterad, M.A. 2009. Optimal geometric configuration and algorithms for LAI indirect estimates under row canopies: The case of vineyards. Agricultural and Forest Meteorology, 149(8), 1307- 1316. https://doi.org/10.1016/j.agrformet.2009.03.001Martínez, B., Camacho-de Coca, F., García-Haro, F. 2005a. Estimación de parámetros biofísicos de la cubierta vegetal a alta resolución a partir de medidas in-situ obtenidas en SPARC'03. XI Congreso Nacional de Teledetección, 21-23.Martínez, B., García-haro, F., Camacho-de Coca, F. 2005b. Estimación de parámetros biofísicos de vegetación utilizando el método de la cámara hemisférica. Revista de Teledetección, 23, 13-26.Mattar, C., Hernández, J., Santamaría-Artigas, A., Durán-Alarcón, C., Olivera-Guerra, L., Inzunza, M., Tapia, D., Escobar-lavín, E. 2014. A first in-flight absolute calibration of the Chilean Earth Observation Satellite. ISPRS Journal of Photogrammetry and Remote Sensing, 92, 16-25. https://doi.org/10.1016/j.isprsjprs.2014.02.017Mougin, E., Demarez, V., Diawara, M., Hiernaux, P., Soumaguel, N., Berg, A. 2014. Estimation of LAI, fAPAR and fCover of Sahel rangelands (Gourma, Mali). Agricultural and Forest Meteorology, 198, 155- 167. https://doi.org/10.1016/j.agrformet.2014.08.006Nestola, E., Sánchez-Zapero, J., Latorre, C., Mazzenga, F., Matteucci, G., Calfapietra, C., Camacho, F. 2017. Validation of PROBA-V GEOV1 and MODIS C5 & C6 fAPAR Products in a Deciduous Beech Forest Site in Italy. Remote Sensing, 9(2), 126. https://doi.org/10.3390/rs9020126Olivera-Guerra, L., Mattar, C., Galleguillos, M. 2014. Estimation of real evapotranspiration and its variation in Mediterranean landscapes of central-southern Chile. International Journal of Applied Earth Observation and Geoinformation, 28(1), 160-169. https://doi.org/10.1016/j.jag.2013.11.012Olivera-Guerra, L., Merlin, O., Mattar, C., Duran-Alarcon, C., Santamaria-Artigas, A., Stefan, V. 2015. Combining meteorological and lysimeter data to evaluate energy and water fluxes over a row crop for remote sensing applications. International Geoscience and Remote Sensing Symposium (IGARSS), 2015-Novem, 4649- 4651. https://doi.org/10.1109/IGARSS.2015.7326865Paul M. Rich, 1990. Characterizing Plant Canopies with Hemispherical Photograph s. Remote Sensing Reviews, 5(November 2012), 37-41. https://doi.org/10.1080/02757259009532119Rigon, J.P.G., Capuani, S., Fernandes, D.M., Guimarães, T.M. 2016. A novel method for the estimation of soybean chlorophyll content using a smartphone and image analysis. Photosynthetica, 54(4), 559-566. https://doi.org/10.1007/s11099-016-0214-xSarricolea, P., Herrera-Ossandon, M., MeseguerRuiz, Ó. 2017. Climatic regionalisation of continental Chile. Journal of Maps, 13(2), 66-73. https://doi.org/10.1080/17445647.2016.1259592Sellers, P.J., Dickinson, R.E., Randall, D.A., Betts, A.K., Hall, F.G., Berry, J.A., et al. 1997. Modeling the Exchanges of Energy, Water, and Carbon between Continents and the Atmosphere. Science , 275(5299), 502-509. https://doi.org/10.1126/science.275.5299.502Tarnavsky, E., Garrigues, S., Brown, M.E. 2008. Multiscale geostatistical analysis of AVHRR, SPOT-VGT, and MODIS global NDVI products. Remote Sensing of Environment, 112(2), 535-549. https://doi.org/10.1016/j.rse.2007.05.008Verger, A., Baret, F., Camacho, F. 2011. Optimal modalities for radiative transfer-neural network estimation of canopy biophysical characteristics: Evaluation over an agricultural area with CHRIS/PROBA observations. Remote Sensing of Environment, 115(2), 415-426. https://doi.org/10.1016/j.rse.2010.09.012Weiss, M., Baret, F. 2016. Can Eye User Manual.Weiss, M., Baret, F., Smith, G.J., Jonckheere, I., Coppin, P. 2004. Review of methods for in situ leaf area index (LAI) determination Part II. Estimation of LAI, errors and sampling. Agricultural and Forest Meteorology, 121(1-2), 37-53. https://doi.org/10.1016/j.agrformet.2003.08.001Zheng, G., Moskal, L.MX009. Retrieving Leaf Area Index (LAI) Using Remote Sensing: Theories, Methods and Sensors. Sensors, 9(4), 2719-2745. https://doi.org/10.3390/s9040271
Interação genótipo-ambiente para peso ao sobreano em alguns estados brasileiros e em clusters de municípios do estado de São Paulo em bovinos da raça Canchim.
Foram analisados dados de rebanhos Canchim pertencentes a alguns estados do Brasil (IGA1) e clusters de municípios paulistas (IGA2) para a investigação da presença de interação genótipo-ambiente (IGA) para a característica peso ao sobreano (PS). Duas investigações distintas foram realizadas para os diferentes ambientes (IGA1 e IGA2) por meio da comparação de dois modelos sugeridos em cada ambiente, um com o efeito aleatório de touro-ambiente e o outro sem este efeito. Para o estudo no ambiente IGA1 foi constatada a presença da IGA, indicando alteração significativa no desempenho de PS dos animais conforme a região em que foram avaliados. No estudo no ambiente IGA2 não foi encontrada diferença significativa entre os desempenhos de PS nos clusters paulistas, sugerindo não haver IGA entre os municípios analisados. No entanto, no estudo de IGA2 houve variação entre os modelos das estimativas das variâncias genéticas, de ambiente e fenotípicas, o que não permitiu descartar a possibilidade da presença da IGA
Utilização de técnicas estatísticas multivariadas para definição de ambiente de produção do peso ao sobreano para o estudo da interação genótipo-ambiente em bovinos Canchim.
As respostas diferentes de genótipos às variações ambientais são investigadas nos estudos de interação genótipo-ambiente. A definição de ambiente nesses estudos ainda é um desafio, pois muitos fatores não genéticos podem causar efeito sobre a expressão de um conjunto de genes. Neste estudo, com as técnicas de estatística multivariada foram definidos ambientes de produção de bovinos Canchim, por meio de variáveis ambientais, formando grupos homogêneos de municípios do estado de São Paulo com informações de peso ao sobreano desta raça. As técnicas de Agrupamento Hierárquico e não Hierárquico foram eficientes para a simplificação e formação de quatro clusters homogêneos com membros de municípios paulistas, e heterogêneos entre si. Já, a técnica de componentes principais (CP) permitiu discriminar para cada cluster os fatores ambientais mais relevantes em sua formação, através de dois CP que preservaram 81,52% da variabilidade contida no conjunto das variáveis ambientais originais. As técnicas de estatística multivariada foram, portanto, ferramentas eficientes para discriminar ambientes de produção em estudos da interação genótipo-ambiente de bovinos Canchim
Predicting the glomerular filtration rate in bariatric surgery patients
BACKGROUND/AIMS: Identifying the best method to estimate the glomerular filtration rate (GFR) in bariatric surgery patients has important implications for the clinical care of obese patients and research into the impact of obesity and weight reduction on kidney health. We therefore performed such an analysis in patients before and after surgical weight loss.
METHODS: Fasting measured GFR (mGFR) by plasma iohexol clearance before and after bariatric surgery was obtained in 36 severely obese individuals. Estimated GFR was calculated using the Modification of Diet in Renal Disease equation, the Chronic Kidney Disease Epidemiology Collaboration (CKD-EPI) equation using serum creatinine only, the CKD-EPI equation using serum cystatin C only and a recently derived equation that uses both serum creatinine and cystatin C (CKD-EPIcreat-cystC) and then compared to mGFR.
RESULTS: Participants were primarily middle-aged white females with a mean baseline body mass index of 46 ± 9, serum creatinine of 0.81 ± 0.24 mg/dl and mGFR of 117 ± 40 ml/min. mGFR had a stronger linear relationship with inverse cystatin C before (r = 0.28, p = 0.09) and after (r = 0.38, p = 0.02) surgery compared to the inverse of creatinine (before: r = 0.26, p = 0.13; after: r = 0.11, p = 0.51). mGFR fell by 17 ± 35 ml/min (p = 0.007) following surgery. The CKD-EPIcreat-cystC was unquestionably the best overall performing estimating equation before and after surgery, revealing very little bias and a capacity to estimate mGFR within 30% of its true value over 80% of the time. This was true whether or not mGFR was indexed for body surface area.
CONCLUSIONS: In severely obese bariatric surgery patients with normal kidney function, cystatin C is more strongly associated with mGFR than is serum creatinine. The CKD-EPIcreat-cystC equation best predicted mGFR both before and after surgery
The Impact Of Cardiac Diseases During Pregnancy On Severe Maternal Morbidity And Mortality In Brazil.
To evaluate maternal heart disease as a cause or complicating factor for severe morbidity in the setting of the Brazilian Network for Surveillance of Severe Maternal Morbidity. Secondary data analysis of this multicenter cross-sectional study was implemented in 27 referral obstetric units in Brazil. From July 2009 to June 2010, a prospective surveillance was conducted among all delivery hospitalizations to identify cases of severe maternal morbidity (SMM), including Potentially Life-Threatening Conditions (PLTC) and Maternal Near Miss (MNM), using the new criteria established by the WHO. The variables studied included: sociodemographic characteristics, clinical and obstetric history of the women; perinatal outcome and the occurrence of maternal outcomes (PLTC, MNM, MD) between groups of cardiac and non-cardiac patients. Only heart conditions with hemodynamic impact characterizing severity of maternal morbidity were considered. 9555 women were included in the Network with severe pregnancy-related complications: 770 maternal near miss cases and 140 maternal death cases. A total of 293 (3.6%) cases were related to heart disease and the condition was known before pregnancy in 82.6% of cases. Maternal near miss occurred in 15% of cardiac disease patients (most due to clinical-surgical causes, p<0.001) and 7.7% of non-cardiac patients (hemorrhagic and hypertensive causes, p<0.001). Maternal death occurred in 4.8% of cardiac patients and in 1.2% of non-cardiac patients, respectively. In this study, heart disease was significantly associated with a higher occurrence of severe maternal outcomes, including maternal death and maternal near miss, among women presenting with any severe maternal morbidity.10e014438
- …