6,028 research outputs found

    Hydrogen sulphide regulates inward-rectifying K+ channels in conjunction with stomatal closure

    Get PDF
    Hydrogen sulphide (H2S) is the third biological gasotransmitter and, in animals, affects many physiological processes by modulating ion channels. H2S has been reported to protect plants from oxidative stress in diverse physiological responses. H2S closes stomata, but the underlying mechanism remains elusive. Here we report the selective inactivation of current carried by inward-rectifying K+ channels (IKIN) of tobacco guard cells and demonstrate its close parallel with stomatal closure evoked by submicromolar concentrations of H2S. Experiments to scavenge H2S suggested an effect that is separable from that of abscisic acid, which is associated with water stress. Thus, H2S appears to associate with a new and as yet unresolved signalling pathway that selectively targets IKIN

    Multifractality of quantum wave functions in the presence of perturbations

    Get PDF
    We present a comprehensive study of the destruction of quantum multifractality in the presence of perturbations. We study diverse representative models displaying multifractality, including a pseudointegrable system, the Anderson model and a random matrix model. We apply several types of natural perturbations which can be relevant for experimental implementations. We construct an analytical theory for certain cases, and perform extensive large-scale numerical simulations in other cases. The data are analyzed through refined methods including double scaling analysis. Our results confirm the recent conjecture that multifractality breaks down following two scenarios. In the first one, multifractality is preserved unchanged below a certain characteristic length which decreases with perturbation strength. In the second one, multifractality is affected at all scales and disappears uniformly for a strong enough perturbation. Our refined analysis shows that subtle variants of these scenarios can be present in certain cases. This study could guide experimental implementations in order to observe quantum multifractality in real systems.Comment: 20 pages, 27 figure

    Two scenarios for quantum multifractality breakdown

    Get PDF
    We expose two scenarios for the breakdown of quantum multifractality under the effect of perturbations. In the first scenario, multifractality survives below a certain scale of the quantum fluctuations. In the other one, the fluctuations of the wave functions are changed at every scale and each multifractal dimension smoothly goes to the ergodic value. We use as generic examples a one-dimensional dynamical system and the three-dimensional Anderson model at the metal-insulator transition. Based on our results, we conjecture that the sensitivity of quantum multifractality to perturbation is universal in the sense that it follows one of these two scenarios depending on the perturbation. We also discuss the experimental implications.Comment: 5 pages, 4 figures, minor modifications, published versio

    On the semantic representation of risk

    Get PDF

    Semiclassical approach to fidelity amplitude

    Full text link
    The fidelity amplitude is a quantity of paramount importance in echo type experiments. We use semiclassical theory to study the average fidelity amplitude for quantum chaotic systems under external perturbation. We explain analytically two extreme cases: the random dynamics limit --attained approximately by strongly chaotic systems-- and the random perturbation limit, which shows a Lyapunov decay. Numerical simulations help us bridge the gap between both extreme cases.Comment: 10 pages, 9 figures. Version closest to published versio

    Identifying robust correlates of risk preference: A systematic approach using specification curve analysis

    Get PDF
    • 

    corecore