114 research outputs found

    oHSV Genome Editing by Means of galK Recombineering

    Get PDF
    open8noThis work was supported by European Research Council (ERC) Advanced Grant number 340060, VII framework program to G. C.-F., by RFO (University of Bologna) to L.M. and T.G, and by Fondi Pallotti to T.G.Since the cloning of the herpes simplex virus (HSV) genome as BAC (bacterial artificial chromosome), the genetic engineering of the viral genome has become readily feasible. The advantage is that the modification of the animal virus genome is carried out in bacteria, with no replication or production of viral progeny, and is separated from the reconstitution or regeneration of the recombinant virus in mammalian cells. This allows an easy engineering of essential genes, as well. Many technologies have been developed for herpesvirus BAC engineering. In our hands the most powerful is galK recombineering that exploits a single marker (galK) for positive and negative selection and PCR amplicons for seamless modification in the desired genome locus. Here we describe the engineering of the HSV recombinant BAC 115 by the insertion of a heterologous cassette for the expression of murine interleukin 12 (mIL12) in the intergenic sequence between US1 and US2 ORFs.embargoed_20201017Laura Menotti, Valerio Leoni, Valentina Gatta, Biljana Petrovic, Andrea Vannini, Simona Pepe, Tatiana Gianni, Gabriella Campadelli-FiumeLaura Menotti, Valerio Leoni, Valentina Gatta, Biljana Petrovic, Andrea Vannini, Simona Pepe, Tatiana Gianni, Gabriella Campadelli-Fium

    Delivery of Oncolytic Reovirus by Cell Carriers

    Get PDF
    Oncolytic virus therapy is a rapidly expanding branch of cancer immunotherapy and represents a genuine opportunity to improve currently available treatment options. However, as single agents oncolytic viruses have shown only moderate clinical benefit and many challenges remain before their full potential is realized. Central to this is the efficient delivery of the virus to the tumor site and potentiation of the antitumor immune response. This chapter describes the loading of oncolytic reovirus onto monocytes which act as carriers for delivery of the virus to the tumor site and, as antigen presenting cells, may also thereby potentiate the development of an adaptive antitumor immune response

    Evidence for an ependymoma tumour suppressor gene in chromosome region 22pter–22q11.2

    Get PDF
    Ependymomas are glial tumours of the brain and spinal cord. The most frequent genetic change in sporadic ependymoma is monosomy 22, suggesting the presence of an ependymoma tumour suppressor gene on that chromosome. Clustering of ependymomas has been reported to occur in some families. From an earlier study in a family in which four cousins developed an ependymoma, we concluded that an ependymoma-susceptibility gene, which is not the NF2 gene in 22q12, might be located on chromosome 22. To localize that gene, we performed a segregation analysis with chromosome 22 markers in this family. This analysis revealed that the susceptibility gene may be located proximal to marker D22S941 in 22pter–22q11.2. Comparative genomic hybridization showed that monosomy 22 was the sole detectable genetic aberration in the tumour of one of the patients. Loss of heterozygosity studies in that tumour revealed that, in accordance to Knudson’s two-hit theory of tumorigenesis, the lost chromosome 22 originated from the parent presumed to have contributed the wild-type allele of the susceptibility gene. Thus, our segregation and tumour studies collectively indicate that an ependymoma tumour suppressor gene may be present in region 22pter–22q11.2. © 1999 Cancer Research Campaig

    Lifestyle factors and primary glioma and meningioma tumours in the Million Women Study cohort

    Get PDF
    Previous studies have reported inconsistent results on the effect of anthropometric and lifestyle factors on the risk of developing glioma or meningioma tumours. A prospective cohort of 1.3 million middle-aged women was used to examine these relationships. During 7.7 million women-years of follow-up, a total of 1563 women were diagnosed with a primary incident central nervous system tumour: 646 tumours were classified as glioma and 390 as meningioma. Our results show that height is related to the incidence of all central nervous system tumours with a risk of about 20% per 10 cm increase in height (relative risk=1.19, 95% CI=1.10–1.30 per 10 cm increase in height, P<0.001): the risks did not differ significantly between specified glioma and meningioma. Body mass index (BMI) was also related to central nervous system tumour incidence, with a risk of about 20% per 10 kg m−2 increase in BMI (relative risk=1.17, 95% CI=1.03–1.34 per 10 kg m−2 increase in BMI, P=0.02). Smoking status, alcohol intake, socioeconomic level, parity, age at first birth, and oral contraceptive use were not associated with the risk of glioma or meningioma tumours. In conclusion, for women in the United Kingdom, the incidence of glioma or meningioma tumours increases with increasing height and increasing BMI

    Activation of Cytotoxic and Regulatory Functions of NK Cells by Sindbis Viral Vectors

    Get PDF
    Oncolytic viruses (OVs) represent a relatively novel anti-cancer modality. Like other new cancer treatments, effective OV therapy will likely require combination with conventional treatments. In order to design combinatorial treatments that work well together, a greater scrutiny of the mechanisms behind the individual treatments is needed. Sindbis virus (SV) based vectors have previously been shown to target and kill tumors in xenograft, syngeneic, and spontaneous mouse models. However, the effect of SV treatment on the immune system has not yet been studied. Here we used a variety of methods, including FACS analysis, cytotoxicity assays, cell depletion, imaging of tumor growth, cytokine blockade, and survival experiments, to study how SV therapy affects Natural Killer (NK) cell function in SCID mice bearing human ovarian carcinoma tumors. Surprisingly, we found that SV anti-cancer efficacy is largely NK cell-dependent. Furthermore, the enhanced therapeutic effect previously observed from Sin/IL12 vectors, which carry the gene for interleukin 12, is also NK cell dependent, but works through a separate IFNγ-dependent mechanism, which also induces the activation of peritoneal macrophages. These results demonstrate the multimodular nature of SV therapy, and open up new possibilities for potential synergistic or additive combinatorial therapies with other treatments

    Permissivity of the NCI-60 cancer cell lines to oncolytic Vaccinia Virus GLV-1h68

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Oncolytic viral therapy represents an alternative therapeutic strategy for the treatment of cancer. We previously described GLV-1h68, a modified Vaccinia Virus with exclusive tropism for tumor cells, and we observed a cell line-specific relationship between the ability of GLV-1h68 to replicate in vitro and its ability to colonize and eliminate tumor in vivo.</p> <p>Methods</p> <p>In the current study we surveyed the in vitro permissivity to GLV-1h68 replication of the NCI-60 panel of cell lines. Selected cell lines were also tested for permissivity to another Vaccinia Virus and a vesicular stomatitis virus (VSV) strain. In order to identify correlates of permissity to viral infection, we measured transcriptional profiles of the cell lines prior infection.</p> <p>Results</p> <p>We observed highly heterogeneous permissivity to VACV infection amongst the cell lines. The heterogeneity of permissivity was independent of tissue with the exception of B cell derivation. Cell lines were also tested for permissivity to another Vaccinia Virus and a vesicular stomatitis virus (VSV) strain and a significant correlation was found suggesting a common permissive phenotype. While no clear transcriptional pattern could be identified as predictor of permissivity to infection, some associations were observed suggesting multifactorial basis permissivity to viral infection.</p> <p>Conclusions</p> <p>Our findings have implications for the design of oncolytic therapies for cancer and offer insights into the nature of permissivity of tumor cells to viral infection.</p

    Intravenously Administered Alphavirus Vector VA7 Eradicates Orthotopic Human Glioma Xenografts in Nude Mice

    Get PDF
    VA7 is a neurotropic alphavirus vector based on an attenuated strain of Semliki Forest virus. We have previously shown that VA7 exhibits oncolytic activity against human melanoma xenografts in immunodeficient mice. The purpose of this study was to determine if intravenously administered VA7 would be effective against human glioma.In vitro, U87, U251, and A172 human glioma cells were infected and killed by VA7-EGFP. In vivo, antiglioma activity of VA7 was tested in Balb/c nude mice using U87 cells stably expressing firefly luciferase in subcutaneous and orthotopic tumor models. Intravenously administered VA7-EGFP completely eradicated 100% of small and 50% of large subcutaneous U87Fluc tumors. A single intravenous injection of either VA7-EGFP or VA7 expressing Renilla luciferase (VA7-Rluc) into mice bearing orthotopic U87Fluc tumors caused a complete quenching of intracranial firefly bioluminescence and long-term survival in total 16 of 17 animals. In tumor-bearing mice injected with VA7-Rluc, transient intracranial and peripheral Renilla bioluminescence was observed. Virus was well tolerated and no damage to heart, liver, spleen, or brain was observed upon pathological assessment at three and ninety days post injection, despite detectable virus titers in these organs during the earlier time point.VA7 vector is apathogenic and can enter and destroy brain tumors in nude mice when administered systemically. This study warrants further elucidation of the mechanism of tumor destruction and attenuation of the VA7 virus
    corecore