185,313 research outputs found

    Spheromak Experiment Using Separate Guns For Formation And Sustainment

    Get PDF
    An experiment is described that incorporates the use of separate magnetized plasma guns for formation and sustainment of a spheromak. It is shown that energy coupling efficiency approaches unity if the gun and spheromak are of comparable size. A large gun should be able to operate at lower current and therefore lower voltage. In addition, it is expected that a gun matched to the size of the spheromak will cause less perturbation to the equilibrium. It is proposed to use a smaller gun for spheromak formation and a large, efficient gun for sustainment. The theoretical basis for the experiment is developed, and the details of the experiment are described. A prediction of the equilibrium magnetic flux surfaces using the EFIT code is presented

    Dust outflows and inner gaps generated by massive planets in debris disks

    Full text link
    Main sequence stars are commonly surrounded by debris disks, formed by cold far-IR-emitting dust that is thought to be continuously replenished by a reservoir of undetected dust-producing planetesimals. We have investigated the orbital evolution of dust particles in debris disks harboring massive planets. Small dust grains are blown out by radiation pressure, as is well known; in addition, gravitational scattering by the giant planets also creates an outflow of large grains. We describe the characteristics of this large-particle outflow in different planetary architectures and for different particle sizes. In addition, the ejection of particles is responsible for the clearing of dust inside the orbit of the planet. We study the efficiency of particle ejection and the resulting dust density contrast inside and outside the orbit of the planet, as a function of the planet's mass and orbital elements and the particle size. We discuss its implications for exo-planetary debris disks and for the interpretation of in-situ dust detection experiments on space probes traveling in the outer solar system.Comment: 32 pages (pre-print format), including 12 figures. Accepted to ApJ (2005). Due to space constrains Fig. 3-6 are at very low resolutio

    Compatibility analysis for the 1535-1660 MHz band, part 1 Final report, Jan. - Sep. 1969

    Get PDF
    Electromagnetic compatibility and radio frequency interference of aircraft radio antenna

    The Casimir Effect

    Get PDF
    After a review of the standard calculation of the Casimir force between two metallic plates at zero and non-zero temperatures, we present the study of microscopic models to determine the large-distance asymptotic force in the high-temperature regime. Casimir's conducting plates are modelized by plasmas of interacting charges at temperature T. The charges are either classical, or quantum-mechanical and coupled to a (classical) radiation field. In these models, the force obtained is twice weaker than that arising from standard treatments neglecting the microscopic charge fluctutations inside the bodies. The enforcement of inert boundary conditions on the field in the usual calculations turns out to be inadequate in this regime. Other aspects of dispersion forces are also reviewed. The status of (non-retarded) van der Waals-London forces in a dilute medium of non-zero temperature and density is investigated. In a proper scaling regime called the atomic limit (high dilution and low temperature), one is able to give the exact large-distance atomic correlations up to exponentially small terms as T->0. Retarded van der Waals forces and forces between dielectric bodies are also reviewed. Finally, the Casimir effect in critical phenomena is addressed by considering the free Bose gas. It is shown that the grand-canonical potential of the gas in a slab at the critical value of the chemical potential has finite size corrections of the standard Casimir type. They can be attributed to the existence of long-range order generated by gapless excitations in the phase with broken continuous symmetry.Comment: Lecture notes prepared for the proceedings of the 1st Warsaw School of Statistical Physics, Kazimierz, Poland, June 2005. To appear in Acta Physica Polonica (2006). 52 pages, 0 figures. Available at http://th-www.if.uj.edu.pl/acta/vol37/pdf/v37p2503.pd
    corecore