research

The Casimir Effect

Abstract

After a review of the standard calculation of the Casimir force between two metallic plates at zero and non-zero temperatures, we present the study of microscopic models to determine the large-distance asymptotic force in the high-temperature regime. Casimir's conducting plates are modelized by plasmas of interacting charges at temperature T. The charges are either classical, or quantum-mechanical and coupled to a (classical) radiation field. In these models, the force obtained is twice weaker than that arising from standard treatments neglecting the microscopic charge fluctutations inside the bodies. The enforcement of inert boundary conditions on the field in the usual calculations turns out to be inadequate in this regime. Other aspects of dispersion forces are also reviewed. The status of (non-retarded) van der Waals-London forces in a dilute medium of non-zero temperature and density is investigated. In a proper scaling regime called the atomic limit (high dilution and low temperature), one is able to give the exact large-distance atomic correlations up to exponentially small terms as T->0. Retarded van der Waals forces and forces between dielectric bodies are also reviewed. Finally, the Casimir effect in critical phenomena is addressed by considering the free Bose gas. It is shown that the grand-canonical potential of the gas in a slab at the critical value of the chemical potential has finite size corrections of the standard Casimir type. They can be attributed to the existence of long-range order generated by gapless excitations in the phase with broken continuous symmetry.Comment: Lecture notes prepared for the proceedings of the 1st Warsaw School of Statistical Physics, Kazimierz, Poland, June 2005. To appear in Acta Physica Polonica (2006). 52 pages, 0 figures. Available at http://th-www.if.uj.edu.pl/acta/vol37/pdf/v37p2503.pd

    Similar works