38 research outputs found

    Power considerations towards a sustainable pan-european network

    Get PDF
    Energy savings are observed and quantified in the Pan-European network using transparent optical network technology. The network was dimensioned, using realistic traffic predictions of the optical networking roadmap of the European project BONE

    Dimensioning the future pan-European optical network with energy efficiency considerations

    Get PDF
    This paper studies the overall energy consumption of a pan-European optical transport network for three different time periods: today and in five and ten years from now. In each time period the pan-European network was dimensioned using traffic predictions based on realistic data generated by the optical networking roadmap developed in the framework of the European project Building the Future Optical Network in Europe-BONE. A wavelength routed wavelength division multiplexed optical network based on either transparent or opaque node architectures was examined considering exclusively either 10 Gbit/s or 40 Gbit/s per channel data rates. The results manifest that transparent optical networking technologies are expected to provide significant energy savings of the order of 35% to 55%. It was also shown that the migration towards higher data rates, i.e., from 10 Gbit/s to 40 Gbit/s, is assisting in improving the overall energy efficiency of the network

    Peptide:lipid ratio and membrane surface charge determine the mechanism of action of the antimicrobial peptide BP100. Conformational and functional studies

    Get PDF
    The cecropin-melittin hybrid antimicrobial peptide BP100 (H-KKLFKKILKYL-NH2) is selective for Gram-negative bacteria, negatively charged membranes, and weakly hemolytic. We studied BP100 conformational and functional properties upon interaction with large unilamellar vesicles, LUVs, and giant unilamellar vesicles, GUVs, containing variable proportions of phosphatidylcholine (PC) and negatively charged phosphatidylglycerol (PG). CD and NMR spectra showed that upon binding to PG-containing LUVs BP100 acquires a-helical conformation, the helix spanning residues 3-11. Theoretical analyses indicated that the helix is amphipathic and surface-seeking. CD and dynamic light scattering data evinced peptide and/or vesicle aggregation, modulated by peptide: lipid ratio and PG content. BP100 decreased the absolute value of the zeta potential () of LUVs with low PG contents; for higher PG, binding was analyzed as an ion-exchange process. At high salt, BP100-induced LUVS leakage requires higher peptide concentration, indicating that both electrostatic and hydrophobic interactions contribute to peptide binding. While a gradual release took place at low peptide:lipid ratios, instantaneous loss occurred at high ratios, suggesting vesicle disruption. Optical microscopy of GUVs confirmed BP100-promoted disruption of negatively charged membranes. the mechanism of action of BP100 is determined by both peptide:lipid ratio and negatively charged lipid content While gradual release results from membrane perturbation by a small number of peptide molecules giving rise to changes in acyl chain packing, lipid clustering (leading to membrane defects), and/or membrane thinning, membrane disruption results from a sequence of events large-scale peptide and lipid clustering, giving rise to peptide-lipid patches that eventually would leave the membrane in a carpet-like mechanism. (C) 2014 Elsevier B.V. All rights reserved.Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Institut Nacional de Ciencia e Tecnologia de fluidos complexos (INCTFCx)Nude de Apoio Pesquisa de Fluidos Complexos (NAPFCx)Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)Univ São Paulo, Inst Chem, Dept Biochem, BR-05513970 São Paulo, BrazilUniversidade Federal de São Paulo, Dept Biophys, BR-04044020 São Paulo, BrazilUniv Fed Rio de Janeiro, Inst Med Biochem, Nucl Magnet Resonance Natl Ctr, Rio de Janeiro, BrazilEmbrapa Recursos Genet & Biotecnol, BR-70770917 Brasilia, DF, BrazilUniversidade Federal de São Paulo, Dept Biophys, BR-04044020 São Paulo, BrazilFAPESP: 2007/50970-5FAPESP: 2013/08166-5Web of Scienc

    Specific Recognition of p53 Tetramers by Peptides Derived from p53 Interacting Proteins

    Get PDF
    Oligomerization plays a major role in regulating the activity of many proteins, and in modulating their interactions. p53 is a homotetrameric transcription factor that has a pivotal role in tumor suppression. Its tetramerization domain is contained within its C-terminal domain, which is a site for numerous protein-protein interactions. Those can either depend on or regulate p53 oligomerization. Here we screened an array of peptides derived from proteins known to bind the tetrameric p53 C-terminal domain (p53CTD) and identified ten binding peptides. We quantitatively characterized their binding to p53CTD using fluorescence anisotropy. The peptides bound tetrameric p53CTD with micromolar affinities. Despite the high charge of the binding peptides, electrostatics contributed only mildly to the interactions. NMR studies indicated that the peptides bound p53CTD at defined sites. The most significant chemical shift deviations were observed for the peptides WS100B(81–92), which bound directly to the p53 tetramerization domain, and PKCα(281–295), which stabilized p53CTD in circular dichroism thermal denaturation studies. Using analytical ultracentrifugation, we found that several of the peptides bound preferentially to p53 tetramers. Our results indicate that the protein-protein interactions of p53 are dependent on the oligomerization state of p53. We conclude that peptides may be used to regulate the oligomerization of p53
    corecore