34 research outputs found

    Effect of genotypic, meteorological and agronomic factors on the gluten index of winter durum wheat

    Get PDF
    The determination of the gluten index is a widely used method for analysing the gluten strength of bread wheat and spring durum wheat genotypes. The present work was carried out to study the effect of the genotype, meteorological factors (temperature, precipitation and number of days with Tmax ≥ 30 °C) and agronomic treatments (N fertilisation and plant protection) on the gluten index of winter durum wheat varieties and breeding lines. The results indicated that the gluten index had little dependence on the environment, being determined to the greatest extent by the genotype. Compared with varieties having weak gluten, those with a strong gluten matrix responded less sensitively to changes in environmental conditions. Among the meteorological factors, high temperature at the end of the grain-filling period caused the greatest reduction in the mean gluten index of three varieties (R 2 = 0.462), while the fertiliser was found to be a significant factor affecting the gluten strength of winter durum wheat varieties. Using selection based on the gluten index, the gluten strength of winter durum wheat lines can be improved sufficiently to make them competitive with high quality spring varieties

    Revision of the estimates of glutenin gene effects at the Glu-B1 locus from southern Australian wheat breeding programs

    No full text
    Glutenins are the major determinant of dough characteristics in wheat. These proteins are determined by genes at 6 loci, with multiple alleles present in southern Australian breeding programs. Previously, we estimated the effects of these genes on maximum dough resistance (Rmax), dough extensibility and dough development time. Subsequently, the allele previously classified as Glu-B1b was found to consist of 2 alleles, with one, now considered to be Glu-B1al, producing an overexpression of the Bx7 glutenin subunit. Therefore, there is a potential bias in our previous estimates. An extended dataset was analysed with the 2 alleles now separated. These analyses identified negligible biases in our previous estimates, probably due to a low frequency of Glu-B1al before 1999. However, Glu-B1al produced significantly higher Rmax, dough extensibility, and dough development time values than all other alleles at the Glu-B1 locus. Therefore, at intermediate allele frequencies, substantial bias in estimates of the effects of the Glu-B1 alleles can be expected without correct identification of Glu-B1al.H. A. Eagles, R. F. Eastwood, G. J. Hollamby, E. M. Martin and G. B. Cornis
    corecore