9 research outputs found

    Homogénéisation périodique d'un matériau élastoplastique compressible anisotrope : application aux structures sandwichs à coeur cellulaire

    Get PDF
    GrĂące Ă  leurs bonnes propriĂ©tĂ©s mĂ©caniques spĂ©cifiques, les matĂ©riaux cellulaires architecturĂ©s prĂ©sentent un fort intĂ©rĂȘt pour rĂ©pondre aux problĂ©matiques du secteur aĂ©ronautique, notamment pour la tenue structurale et la rĂ©sistance Ă  l'impact. De par leurs architectures, ces matĂ©riaux prĂ©sentent en gĂ©nĂ©ral trois Ă©chelles caractĂ©ristiques: l'Ă©chelle macroscopique de la structure, l'Ă©chelle mĂ©soscopique associĂ©e Ă  la cellule Ă©lĂ©mentaire et l'Ă©chelle microscopique liĂ©e au matĂ©riau constitutif. La modĂ©lisation d'architectures de grande dimension est difficile Ă  mettre en oeuvre car couteuse en temps de calcul. Pour contourner ce problĂšme, la mise en place d'une modĂ©lisation multi-Ă©chelle basĂ©e sur l'identification d'une Loi HomogĂšne Equivalente (LHE) est proposĂ©e. L'Ă©tude du comportement multi-axial du matĂ©riau cellulaire Ă  l'Ă©chelle de son Volume ElĂ©mentaire ReprĂ©sentatif (VER) nous permet, par homogĂ©nĂ©isation pĂ©riodique, d'expliciter le comportement macroscopique et d'identifier une LHE compressible et anisotrope. La structure sandwich est ensuite modĂ©lisĂ©e en remplaçant le coeur cellulaire par un Milieu HomogĂšne Equivalent (MHE). Pour des cas de chargements quasi-statiques, l'influence des effets de bords sur le comportement macroscopique de la structure en fonction des diffĂ©rents types d'empilement des tubes, de la taille des structures sandwichs et du type de chargement a Ă©tĂ© analysĂ©e. La mĂ©thode donne des rĂ©sultats satisfaisants mais prĂ©sente des limites quant Ă  la validitĂ© de la sĂ©paration des Ă©chelles, indispensable Ă  l'approche par homogĂ©nĂ©isation, il est donc envisagĂ© d'enrichir la mĂ©thode par les milieux continus gĂ©nĂ©ralisĂ©s pour mieux prendre en compte les phĂ©nomĂšnes induits par la localisation des dĂ©formations. Une confrontation avec des essais mĂ©caniques sera entreprise pour discuter de la validitĂ© des modĂšles proposĂ©s, avec une extension progressive Ă  des chargements dynamiques

    Tensions sur les ressources minérales : pourraient-elles impacter les trajectoires de décarbonation du transport aérien mondial ?

    No full text
    In order to reduce its CO2 emissions, the air transportation sector has imagined different trajectories for decarbonizing its traffic. It thus relies on the deployment of new aircraft fleets that will be more fuel efficient, but also on the introduction of alternative fuels, such as e-fuels, and hydrogen. As a research organization dedicated to aeronautics and space, ONERA is involved in the construction of these scenarios. However, at the aircraft and fuel production level, their implementation will involve significant mineral resourcerequirements. These resources may be specific to the aeronautical sector or associated with energy production, the scenarios envisaged being based directly or indirectly on the significant use of low-carbon electricity. By estimating the material footprints of the aircraft and the various sources of low-carbon fuels involved, we focus on mapping resources that could be critical for the implementation of these scenarios. It is a question of analyzing the needs in terms of availability with regard to world demand. Prospectively, it is also a matter of assessing the robustness of the aforementioned scenarios and identifying possible avenues to address potential supply pressures on some of these resources.Afin de diminuer ses Ă©missions de CO2, le secteur aĂ©rien imagine diffĂ©rentes trajectoires de dĂ©carbonation de son trafic. Il compte ainsi sur le dĂ©ploiement de nouvelles flottes d’avions plus sobres en termes de consommation de carburants, mais aussi sur l’introduction de carburants alternatifs tels les Ă©lectro-carburants, et de l’hydrogĂšne. En tant qu’organisme de recherche dĂ©diĂ© Ă  l’aĂ©ronautique et au spatial, l’ONERA est partie prenante dans la construction de ces scĂ©narios. Cependant, Ă  l’échelle de l’avion et de la production de ses carburants, leur mise en Ɠuvre nĂ©cessitera d’importants besoins en ressources minĂ©rales. Ces ressources pourront ĂȘtre spĂ©cifiques au secteur aĂ©ronautique ou associĂ©es Ă  la production d’énergie, les scĂ©narios envisagĂ©s reposant directement ou indirectement sur l’utilisation importante d’électricitĂ© dĂ©carbonĂ©e. GrĂące Ă  l’estimation des empreintes matiĂšres des aĂ©ronefs et des diffĂ©rentes filiĂšres pour la production des carburants dĂ©carbonĂ©s, nous nous attachons Ă  cartographier les ressources qui pourraient ĂȘtre critiques dans la perspective de la mise en Ɠuvre de ces scĂ©narios. Il s’agit d’analyser les besoins en termes de disponibilitĂ© vis-Ă -vis de la demande mondiale. De façon prospective, il s’agit aussi d’évaluer la robustesse des scĂ©narios de dĂ©carbonation et d’identifier des pistes possibles pour pallier d’éventuelles tensions d’approvisionnement sur certaines de ces ressources

    Comportement mécanique des architectures cellulaires - Du matériau à la structure

    No full text
    This manuscript has been written with the purpose to obtain my habilitation degree to supervise researches. It is divided into three distinct parts. The first part presents my resume since my PhD Thesis, whereas the second one is dedicated to the main issue I have been working on since my hiring at ONERA. It aims at investigating the characterization and the modelling of cellular architectures mechanical behaviour. Such architectures can be grasped both as materials and structures. Indeed, their effective behaviour is governed by various mechanisms observed at these different scales of which separability is often unverified. In the present works, focus has thus been put on the characterization of the respective contributions of these mechanisms implied in the effective mechanical behaviour of cellular architectures. Especially, the role of the constitutive material behaviour of the walls of the constitutive cells has been deeply investigated, not only at room temperature but also at higher ones. For that purpose, influence of the processing and the resulting microstructural evolutions have been discussed. The contribution of the geometry of the cells and the one resulting from the presence or not of some architectural defects have been analysed too. An important effort has concerned the mechanical behaviour of cellular architectures under compressive loads, especially when high compaction rates are reached. In that case, some local buckling phenomena of the walls of the cells are observed and new internal contacts are created. They result in structural non-linearities in addition to those coming from the constitutive material behaviour. The last issue investigated has concerned the characterization of homogeneous equivalent media for the modelling of the mechanical behaviour of cellular architectures, and their relevance for the modelling of large structures with cellular parts.The third part of this manuscript proposes various issues that could be critical in a near future. These issues concern not only the mechanical behaviour of cellular architectures, but also different other issues I work on at ONERA.Ce manuscrit a Ă©tĂ© rĂ©digĂ© dans le but d’obtenir mon Habilitation Ă  Diriger des Recherches et se divise en trois parties distinctes. La premiĂšre partie retrace mon parcours depuis ma thĂšse de Doctorat jusqu’à aujourd’hui. La deuxiĂšme partie est dĂ©diĂ©e aux travaux que j’ai rĂ©alisĂ©s depuis mon embauche Ă  l’ONERA.Ces travaux portent sur la caractĂ©risation et la modĂ©lisation du comportement mĂ©canique des architectures cellulaires, thĂ©matique sur laquelle j’ai principalement travaillĂ©. Ces architectures se caractĂ©risent par le fait qu’elles sont Ă  mi-chemin entre le matĂ©riau et la structure et que les mĂ©canismes qui rĂ©gissent leur comportement proviennent de ces diffĂ©rentes Ă©chelles. Qui plus est, l’hypothĂšse de sĂ©parabilitĂ© de ces Ă©chelles est rarement vĂ©rifiĂ©e. Au cours de ces travaux, l’accent a donc Ă©tĂ© mis sur la comprĂ©hension des contributions respectives de ces diffĂ©rents mĂ©canismes sur le comportement effectif de telles architectures cellulaires. Ainsi, le rĂŽle du comportement du matĂ©riau constitutif des parois des cellules a Ă©tĂ© Ă©tudiĂ© Ă  tempĂ©rature ambiante, mais aussi Ă  chaud, en lien avec les procĂ©dĂ©s d’élaboration et la microstructure. L’influence de la gĂ©omĂ©trie des cellules ou de la prĂ©sence de dĂ©fauts d’architecture ont aussi Ă©tĂ© investiguĂ©es. Un effort important a portĂ© sur l’analyse du comportement en compression de ces architectures, en particulier aux forts taux d’écrasement pour lesquels sont observĂ©es de nombreuses sources de non-linĂ©aritĂ©, en plus de celle issue du comportement du matĂ©riau constitutif. On peut citer l’apparition de contact intra-empilement et d’instabilitĂ©s rĂ©sultant de flambements locaux des parois des cellules. La derniĂšre problĂ©matique abordĂ©e a concernĂ© l’identification de milieux homogĂšnes Ă©quivalents des architectures cellulaires et leur possible utilisation en calcul de structure.La derniĂšre partie du manuscrit propose diffĂ©rentes perspectives de recherche en lien avec le comportement des architectures cellulaires, mais aussi concernant les autres thĂ©matiques sur lesquelles je travaille

    Effets de taille et d'interphase sur le comportement mécanique de nanocomposites particulaires.

    No full text
    The aim of this work is the development of predictive tools to account for the effect of particle size on the mechanical behaviour of particulate nanocomposites. An introduction of specific information at the atomic scale, via Molecular Dynamics (MD) simulations, into homogenization models of the overall mechanical behaviour of heterogeneous materials (micromechanical approach) is proposed here. The interest of the method proposed in this work lies in the fact that it could be extended to the more general case of taking! into account characteristic length in heterogeneous materials. Studying virtual nanocomposites using MD simulations reveals the existence of an interphase of disturbed matrix surrounding the inclusions. The virtual systems are composed of silica inclusions embedded in a polymer matrix. The range of perturbation to the structure of the polymer chains is independent of the particle size and volume fraction of inclusions, but decreases with increasing temperature. By considering that the interphase surrounding the nanoparticles has a fixed thickness, a particle size effect has been introduced into micromechanical models of the effective mechanical properties of the nanocomposites. In the case of low volume fractions of inclusions, the use of just a 3-phase pattern is sufficient. The study of the mechanical behaviour of virtual nanocomposites, using non-equilibrium MD, reveals a reinforcement effect on the composite moduli and a particle size effect. Confrontation with 3+1-phase micromec! hanical models and the determination of the interphase elastic moduli by inverse techniques allows the stiffening effects observed by MD to be explained in the case of an interphase softer than the matrix.La motivation de ce travail est la mise au point d'outils permettant de prĂ©dire des effets de taille sur le comportement mĂ©canique de nanocomposites particulaires. On se propose d'introduire des informations spĂ©cifiques du comportement Ă  l'Ă©chelle atomique, par le biais de simulations de Dynamique MolĂ©culaire (DM), dans des modĂšles d'homogĂ©nĂ©isation du comportement mĂ©canique global de matĂ©riaux hĂ©tĂ©rogĂšnes (approche micromĂ©canique). L'intĂ©rĂȘt de la dĂ©marche proposĂ©e au cours de ces travaux rĂ©side dans le fait qu'elle peut s'Ă©tendre au cas plus gĂ©nĂ©ral de la prise en compte de longueurs caractĂ©ristiques dans les matĂ©riaux hĂ©tĂ©rogĂšnes. L'Ă©tude de nanocomposites virtuels par le biais de simulations de DM met en Ă©vidence l'existence d'une i! nterphase de matrice perturbĂ©e entourant les inclusions. Ces systĂšmes virtuels sont composĂ©s d'inclusions de silice noyĂ©es dans une matrice polymĂšre. L'Ă©tendue de ces perturbations, observĂ©es sur l'architecture des chaĂźnes de polymĂšre, est indĂ©pendante de la taille des inclusions et du taux de renforts, mais dĂ©croĂźt lorsque la tempĂ©rature augmente. Via la considĂ©ration de cette interphase d'Ă©paisseur fixe entourant les nanoparticules, un intĂ©rĂȘt particulier est portĂ© sur l'introduction, dans les modĂšles micromĂ©caniques, d'un effet de taille des inclusions sur les propriĂ©tĂ©s mĂ©caniques effectives des nanocomposites. Pour les faibles fractions volumiques d'inclusions, la prise en compte d'un seul motif de type 3 phases se rĂ©vĂšle pertinente. L'Ă©tude du comportement mĂ©canique des nanocomposites virtuels, au tr! avers de la DM, met en Ă©vidence un phĂ©nomĂšne de! renforc ement des modules effectifs et un effet de taille des particules. La confrontation avec les modĂšles micromĂ©caniques et la dĂ©termination par mĂ©thode inverse des modules Ă©lastiques de l'interphase grĂące au modĂšle "3+1-phases" permettent d'expliquer les phĂ©nomĂšnes de renforcement observĂ©s en DM dans le cas d'une interphase plus souple que la matrice

    Computational homogenisation of periodic cellular materials: Application to structural modelling

    No full text
    International audienceThe present paper aims at investigating the homogenisation of cellular materials in view of the modelling of large but finite cellular structures. Indeed, computation costs associated with the complete modelling of such structures can be rapidly prohibitive if industrial applications are considered. The use of a homogeneous equivalent medium (HEM) for these cellular materials can be an efficient approach to address this issue, but it requires the calibration of relevant homogeneous equivalent laws (HELs). Here, the considered cellular materials are tube stackings. Various uni-axial and multi-axial loading cases have been simulated, through the finite element method, on representative volume elements of such periodic stackings. From these simulations, anisotropic compressible elasto-plastic constitutive equations have been identified for the HEL. The anisotropy of the yield surfaces is discussed depending on the pattern of the tube stacking (e.g. square or hexagonal). A validation of the identified laws is proposed by simulating uni-axial compression and simple shear tests on sandwich structures made of tube stackings for their cores. A systematic comparison, between the results obtained from the fully meshed structures and those obtained from the structures whose core has been replaced with its HEM, allows us to address the limitations of the HEM-based approach and the boundary layer effects observed on finite structures

    Confrontation between Molecular Dynamics and micromechanical approaches to investigate particle size effects on the mechanical behaviour of polymer nanocomposites

    Get PDF
    International audienceThis paper aims at developing a method to account for a particle size effect on the mechanical behaviour of particulate nanocomposites. An introduction of specific information at the atomic scale, through Molecular Dynamics (MD) simulations, into homogenisation models of the overall mechanical behaviour of heterogeneous materials (micromechanical approaches) is proposed here. By studying virtual nanocomposites, which consist of silica inclusions embedded in a polymer matrix, MD simulations have shown the existence of an interphase of disturbed matrix surrounding the inclusions, whose thickness depends neither on the inclusion size nor on the volume fraction of inclusions. By considering this interphase of fixed thickness, a particle size effect is then deduced from a dilute micromechanical model which derives from the classical Eshelby's inhomogeneity problem. Effective elastic moduli of the composite strongly vary with the particle size for a fixed volume fraction of particles. Nevertheless, opposite trends are observed relative to the interphase behaviour. Whereas effective moduli increase with the particle size for an interphase softer than the matrix, they decrease in the reverse case. The confrontation between MD and micromechanical approaches and the characterisation of the interphase elastic moduli by an inverse method allow the stiffening effects observed by MD to be explained in the case of an interphase softer than the pure matrix
    corecore