117 research outputs found

    Redox Mediation at 11-Mercaptoundecanoic Acid Self-Assembled Monolayers on Gold

    Get PDF
    Cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), and digital simulation techniques were used to investigate quantitatively the mechanism of electron transfer (ET) through densely packed and well-ordered self-assembled monolayers (SAMs) of 11-mercaptoundecanoic acid on gold, either pristine or modified by physically adsorbed glucose oxidase (GOx). In the presence of ferrocenylmethanol (FcMeOH) as a redox mediator, ET kinetics involving either solution-phase hydrophilic redox probes such as [Fe(CN)6]3-/4- or surface-immobilized GOx is greatly accelerated: [Fe(CN)6]3-/4- undergoes diffusion-controlled ET, while the enzymatic electrochemical conversion of glucose to gluconolactone is efficiently sustained by FcMeOH. Analysis of the results, also including the digital simulation of CV and EIS data, showed the prevalence of an ET mechanism according to the so-called membrane model that comprises the permeation of the redox mediator within the SAM and the intermolecular ET to the redox probe located outside the monolayer. The analysis of the catalytic current generated at the GOx/SAM electrode in the presence of glucose and FcMeOH allowed the high surface protein coverage suggested by X-ray photoelectron spectroscopy (XPS) measurements to be confirmed.

    Extremely fast triplet formation by charge recombination in a Nile Red/fullerene flexible dyad

    Get PDF
    A donor/acceptor dyad was obtained by linking Nile Red and fullerene to a calix[4]arene scaffold. The dyad was spectroscopically characterized, both with steady-state and ultrafast transient absorption experiments, as well as with electrochemical and spectroelectrochemical techniques. We demonstrate extremely fast and efficient formation of a long-lived excited triplet localized on the fullerene moiety in this system, occurring in about 80 ps in toluene and 220 ps in chloroform. The mechanism of this process is investigated and discussed. The spectroscopic and electrochemical characterization suggests the occurrence of electron transfer from Nile Red to fullerene, leading to the formation of a charge-separated state. This state lives very briefly and, because of the small interaction between the electron donor and acceptor, promotes a singlet/triplet state mixing, inducing charge recombination and efficient triplet formation

    Efficient photoinduced charge separation in a BODIPY-C60 dyad

    Get PDF
    A donor-acceptor dyad composed of a BF2-chelated dipyrromethene (BODIPY) and a C60 fullerene has been newly synthesized and characterized. The two moieties are linked by direct addition of an azido substituted BODIPY on the C60, producing an imino-fullerene-BODIPY adduct. The photoinduced charge transfer process in this system was studied by ultrafast transient absorption spectroscopy. Electron transfer toward the fullerene was found to occur selectively exciting both the BODIPY chromophore at 475 nm and the C60 unit at 266 nm on a time scale of a few picoseconds, but the dynamics of charge separation was different in the two cases. Eletrochemical studies provided information on the redox potentials of the involved species and spectroelectrochemical measurements allowed to unambiguously assign the absorption band of the oxidized BODIPY moiety, which helped in the interpretation of the transient absorption spectra. The experimental studies were complemented by a theoretical analysis based on DFT computations of the excited state energies of the two components and their electronic couplings, which allowed identification of the charge transfer mechanism and rationalization of the different kinetic behavior observed by changing the excitation conditions

    Co-axial heterostructures integrating palladium/titanium dioxide with carbon nanotubes for efficient electrocatalytic hydrogen evolution

    Get PDF
    Considering the depletion of fossil-fuel reserves and their negative environmental impact, new energy schemes must point towards alternative ecological processes. Efficient hydrogen evolution from water is one promising route towards a renewable energy economy and sustainable development. Here we show a tridimensional electrocatalytic interface, featuring a hierarchical, co-axial arrangement of a palladium/titanium dioxide layer on functionalized multi-walled carbon nanotubes. The resulting morphology leads to a merging of the conductive nanocarbon core with the active inorganic phase. A mechanistic synergy is envisioned by a cascade of catalytic events promoting water dissociation, hydride formation and hydrogen evolution. The nanohybrid exhibits a performance exceeding that of stateof- the-art electrocatalysts (turnover frequency of 15000 H2 per hour at 50mVoverpotential). The Tafel slope of B130mV per decade points to a rate-determining step comprised of water dissociation and formation of hydride. Comparative activities of the isolated components or their physical mixtures demonstrate that the good performance evolves from the synergistic hierarchical structure

    Donor-acceptor nanoensembles of soluble carbon nanotubes

    Get PDF
    Donor-acceptor nanoensembles, prepared via electrostatic interactions of single wall carbon nanotubes and porphyrin salts, give rise to photoinduced intra-complex charge separation that lasts tens of microseconds.Peer reviewedChemistr
    • …
    corecore