431 research outputs found

    Research Update: Energy Strategies for Dry Cows

    Full text link
    This information was presented at the 2014 Cornell Nutrition Conference for Feed Manufacturers, organized by the Department of Animal Science In the College of Agriculture and Life Sciences at Cornell University. Softcover copies of the entire conference proceedings may be purchased at http://ansci.cals.cornell.edu/extension-outreach/adult-extension/dairy-management/order-proceedings-resources or by calling (607)255-4285

    Actions of Camptothecin Derivatives on Larvae and Adults of the Arboviral Vector Aedes aegypti

    Get PDF
    Mosquito-borne viruses including dengue, Zika, and Chikungunya viruses, and parasites such as malaria and Onchocerca volvulus endanger health and economic security around the globe, and emerging mosquito-borne pathogens have pandemic potential. However, the rapid spread of insecticide resistance threatens our ability to control mosquito vectors. Larvae of Aedes aegypti were screened with the Medicines for Malaria Venture Pandemic Response Box, an open-source compound library, using INVAPP, an invertebrate automated phenotyping platform suited to high-throughput chemical screening of larval motility. We identified rubitecan (a synthetic derivative of camptothecin) as a hit compound that reduced A. aegypti larval motility. Both rubitecan and camptothecin displayed concentration dependent reduction in larval motility with estimated EC50 of 25.5 ± 5.0 µM and 22.3 ± 5.4 µM, respectively. We extended our investigation to adult mosquitoes and found that camptothecin increased lethality when delivered in a blood meal to A. aegypti adults at 100 µM and 10 µM, and completely blocked egg laying when fed at 100 µM. Camptothecin and its derivatives are inhibitors of topoisomerase I, have known activity against several agricultural pests, and are also approved for the treatment of several cancers. Crucially, they can inhibit Zika virus replication in human cells, so there is potential for dual targeting of both the vector and an important arbovirus that it carries

    Hydrology and climatology at Laguna La Gaiba, lowland Bolivia: complex responses to climatic forcings over the last 25,000 years

    Get PDF
    Diatom, geochemical and isotopic data provide a record of environmental change in Laguna La Gaiba, lowland Bolivia, over the last ca. 25 000 years. High-resolution diatom analysis around the last glacial–interglacial transition provides new insights into this period of change. The full and late glacial lake was generally quite shallow, but with evidence of periodic flooding. At about 13,100 cal a BP, just before the start of the Younger Dryas chronozone, the diatoms indicate shallower water conditions, but there is a marked change at about 12,200 cal a BP indicating the onset of a period of high variability, with rising water levels punctuated by periodic drying. From ca. 11,800 to 10,000 cal a BP stable, deeper water conditions persisted. There is evidence for drying in the early to middle Holocene, but not as pronounced as that reported from elsewhere in the southern hemisphere tropics of South America. This was followed by the onset of wetter conditions in the late Holocene consistent with insolation forcing. Conditions very similar to present were established about 2,100 cal a BP. A complex response to both insolation forcing and millennial scale events originating in the North Atlantic is noted

    3D black holes on a 2-brane in 4D Minkowski space

    Full text link
    We investigate three-dimensional black hole solutions in the realm of pure and new massive gravity in 2+1 dimensions induced on a 2-brane embedded in a flat four-dimensional spacetime. There is no cosmological constant neither on the brane nor on the four-dimensional bulk. Only gravitational fields are turned on and we indeed find vacuum solutions as black holes in 2+1 dimensions even in the absence of any cosmological solution. There is a crossover scale that controls how far the three- or four-dimensional gravity manifests on the 2-brane. Our solutions also indicate that local BTZ and SdS_3 solutions can flow to local four-dimensional Schwarzschild like black holes, as one probes from small to large distances, which is clearly a higher dimensional manifestation on the 2-brane. This is similar to the DGP scenario where the effects of extra dimensions for large probed distances along the brane manifest.Comment: 10 pages, 5 figures, to appear in PL

    Stability of Subsequent-to-Leading-Logarithm Corrections to the Effective Potential for Radiative Electroweak Symmetry Breaking

    Full text link
    We demonstrate the stability under subsequent-to-leading logarithm corrections of the quartic scalar-field coupling constant λ\lambda and the running Higgs boson mass obtained from the (initially massless) effective potential for radiatively broken electroweak symmetry in the single-Higgs-Doublet Standard Model. Such subsequent-to-leading logarithm contributions are systematically extracted from the renormalization group equation considered beyond one-loop order. We show λ\lambda to be the dominant coupling constant of the effective potential for the radiatively broken case of electroweak symmetry. We demonstrate the stability of λ\lambda and the running Higgs boson mass through five orders of successively subleading logarithmic corrections to the scalar-field-theory projection of the effective potential for which all coupling constants except the dominant coupling constant λ\lambda are disregarded. We present a full next-to-leading logarithm potential in the three dominant Standard Model coupling constants (tt-quark-Yukawa, αs\alpha_s, and λ\lambda) from these coupling constants' contribution to two loop β\beta- and γ\gamma-functions. Finally, we demonstrate the manifest order-by-order stability of the physical Higgs boson mass in the 220-231 GeV range. In particular, we obtain a 231 GeV physical Higgs boson mass inclusive of the tt-quark-Yukawa and αs\alpha_s coupling constants to next-to-leading logarithm order, and inclusive of the smaller SU(2)×U(1)SU(2)\times U(1) gauge coupling constants to leading logarithm order.Comment: 21 pages, latex2e, 2 eps figures embedded in latex file. Updated version contains expanded analysis in Section

    Orthogonal Light-Dependent Membrane Adhesion Induces Social Self-Sorting and Member-Specific DNA Communication in Synthetic Cell Communities

    Get PDF
    Developing orthogonal chemical communication pathways in diverse synthetic cell communities is a considerable challenge due to the increased crosstalk and interference associated with large numbers of different types of sender-receiver pairs. Herein, the authors control which sender-receiver pairs communicate in a three-membered community of synthetic cells through red and blue light illumination. Semipermeable protein-polymer-based synthetic cells (proteinosomes) with complementary membrane-attached protein adhesion communicate through single-stranded DNA oligomers and synergistically process biochemical information within a community consisting of one sender and two different receiver populations. Different pairs of red and blue light-responsive protein-protein interactions act as membrane adhesion mediators between the sender and receivers such that they self-assemble and socially self-sort into different multicellular structures under red and blue light. Consequently, distinct sender-receiver pairs come into the signaling range depending on the light illumination and are able to communicate specifically without activation of the other receiver population. Overall, this work shows how photoswitchable membrane adhesion gives rise to different self-sorting protocell patterns that mediate member-specific DNA-based communication in ternary populations of synthetic cells and provides a step towards the design of orthogonal chemical communication networks in diverse communities of synthetic cells

    DNA-based communication in populations of synthetic protocells

    Get PDF
    Developing molecular communication platforms based on orthogonal communication channels is a crucial step towards engineering artificial multicellular systems. Here, we present a general and scalable platform entitled ‘biomolecular implementation of protocellular communication’ (BIO-PC) to engineer distributed multichannel molecular communication between populations of non-lipid semipermeable microcapsules. Our method leverages the modularity and scalability of enzyme-free DNA strand-displacement circuits to develop protocellular consortia that can sense, process and respond to DNA-based messages. We engineer a rich variety of biochemical communication devices capable of cascaded amplification, bidirectional communication and distributed computational operations. Encapsulating DNA strand-displacement circuits further allows their use in concentrated serum where non-compartmentalized DNA circuits cannot operate. BIO-PC enables reliable execution of distributed DNA-based molecular programs in biologically relevant environments and opens new directions in DNA computing and minimal cell technology

    (B-L) Symmetry vs. Neutrino Seesaw

    Full text link
    We compute the effective coupling of the Majoron to W bosons at \cO(\hbar) by evaluating the matrix element of the (B-L) current between the vacuum and a W+WW^+W^- state. The (B-L) anomaly vanishes, but the amplitude does not vanish as a result of a UV finite and non-local contribution which is entirely due to the mixing between left-chiral and right-chiral neutrinos. The result shows how anomaly-like couplings may arise in spite of the fact that the (B-L) current remains exactly conserved to all orders in \hbar, lending additional support to our previous proposal to identify the Majoron with the axion.Comment: 13 pages, 1 figure, with additional explanations and clarification

    Nariai, Bertotti-Robinson and anti-Nariai solutions in higher dimensions

    Full text link
    We find all the higher dimensional solutions of the Einstein-Maxwell theory that are the topological product of two manifolds of constant curvature. These solutions include the higher dimensional Nariai, Bertotti-Robinson and anti-Nariai solutions, and the anti-de Sitter Bertotti-Robinson solutions with toroidal and hyperbolic topology (Plebanski-Hacyan solutions). We give explicit results for any dimension D>3. These solutions are generated from the appropriate extremal limits of the higher dimensional near-extreme black holes in a de Sitter, and anti-de Sitter backgrounds. Thus, we also find the mass and the charge parameters of the higher dimensional extreme black holes as a function of the radius of the degenerate horizon.Comment: 10 pages, 11 figures, RevTeX4. References added. Published versio
    corecore