We find all the higher dimensional solutions of the Einstein-Maxwell theory
that are the topological product of two manifolds of constant curvature. These
solutions include the higher dimensional Nariai, Bertotti-Robinson and
anti-Nariai solutions, and the anti-de Sitter Bertotti-Robinson solutions with
toroidal and hyperbolic topology (Plebanski-Hacyan solutions). We give explicit
results for any dimension D>3. These solutions are generated from the
appropriate extremal limits of the higher dimensional near-extreme black holes
in a de Sitter, and anti-de Sitter backgrounds. Thus, we also find the mass and
the charge parameters of the higher dimensional extreme black holes as a
function of the radius of the degenerate horizon.Comment: 10 pages, 11 figures, RevTeX4. References added. Published versio