1,064 research outputs found

    Structural and Luminescence Properties of Silica-Based Hybrids Containing New Silylated-Diketonato Europium(III) Complex

    Get PDF
    A new betadiketonate ligand displaying a trimethoxysilyl group as grafting function and a diketone moiety as complexing site (TTA-Si = 4,4,4-trifluoro-2-(3-trimethoxysilyl)propyl)-1-3-butanedione (C4H3S)COCH[(CH2)3Si(OCH3)3]COCF3) and its highly luminescent europium(III) complex [Eu(TTA-Si)3] have been synthesized and fully characterized. Luminescent silica-based hybrids have been prepared as well with this new complex grafted on the surface of dense silica nanoparticles (28 (+/-3 nm) or on mesoporous silica particles. The covalent bonding of Eu(TTA-Si)3 inside the core of uniform silica nanoparticles (40 (+/- 5 nm) was also achieved. Luminescence properties are discussed in relation to the europium chemical environment involved in each of the three hybrids. The general methodology proposed allowed high grafting ratios and overcame chelate release and tendency to agglomeration, and it could be applied to any silica matrix (in the core or at the surface, nanosized or not, dense or mesoporous) and therefore numerous applications such as luminescent markers and luminophors could be foreseen

    Viabilidade técnica e econômica do armazenamento refrigerado de cafés especiais.

    Get PDF
    A valorização do café para a comercialização depende cada vez mais da qualidade, e seu valor varia de acordo com os atributos qualitativos. Baixas temperaturas do ar de armazenagem, além da manutenção do exocarpo (casca) e do endocarpo (pergaminho) do café, diminuem a incidência e o desenvolvimento de microrganismos e são eficazes na preservação da qualidade dos grãos. O objetivo neste trabalho foi investigar a viabilidade técnica e econômica do armazenamento refrigerado de cafés especiais de diferentes pontuações. Café natural, cereja descascado ou desmucilado de produtores de duas regiões foram armazenados, na forma íntegra ou beneficiada, a 15°C ou sem controle de temperatura. Os cafés foram avaliados por meio da análise sensorial e da condutividade elétrica, aos 0, 3, 6, 9 e 12 meses. Foi realizada análise do custo operacional da tecnologia de refrigeração, e os ganhos financeiros foram comparados ao custo operacional da refrigeração. Verificouse que a qualidade dos cafés com pontuação acima de 84 pontos é reduzida quando armazenados sem controle da temperatura, o que resulta na perda das suas características de cafés especiais. A refrigeração, portanto, mantém a qualidade do café, principalmente daqueles de maior pontuação. Observou-se que a refrigeração por 6 ou 12 meses é economicamente vantajosa para cafés especiais. Ademais, o armazenamento dos grãos na forma íntegra é outro fator que favorece a qualidade do café

    Nanoencapsulation of luminescent 3-hydroxypicolinate lanthanide complexes

    Get PDF
    We have synthesized luminescent nanoparticles comprising a core of lanthanide complexes and shells of amorphous silica using reverse micelles as nanoreactors. 3-Hydroxypicolinate complexes of Eu(III), Tb(III), and the corresponding heteronuclear complexes have been investigated as the photoactive cores. The size of the silica particles is within the nanometer scale, which, together with the ability for surface biofunctionalization, opens up perspectives for their use in bioapplications. Optical studies of the as-prepared nanoparticles reveal that the luminescence properties of the 3-hydroxypicolinate complexes in the matrices are markedly different from their original features

    Modulating the photoluminescence of bridged silsesquioxanes incorporating Eu(3+)-complexed n,n '-diureido-2,2 '-bipyridine isomers: application for luminescent solar concentrators

    Get PDF
    Two new urea-bipyridine derived bridged organosilanes (P5 and P6) have been synthesized and their hydrolysis-condensation under nucleophilic catalysis in the presence of Eu(3+) salts led to luminescent bridged silsesquioxanes (M5-Eu and M6-Eu). An important loading of Eu(3+) (up to 11%(w)) can be obtained for the material based on the 6,6'-isomer. Indeed the photoluminescence properties of these materials, that have been investigated in depth (photoluminescence (PL), quantum yield, lifetimes), show a significantly different complexation mode of the Eu(3+) ions for M6-Eu, compared with M4-Eu (obtained from the already-reported 4,4'-isomer) and M5-Eu. Moreover, M6-Eu exhibits the highest absolute emission quantum yield value (0.18 +/- 0.02) among these three materials. The modification of the sol composition upon the addition of a malonamide derivative led to similar luminescent features but with an increased quantum yield (026 +/- 0.03). In addition, M6-Eu can be processed as thin films by spin-coating on glass substrates, leading to plates coated by a thin layer (similar to 54 nm) of Eu(3+)-containing hybrid silica exhibiting one of the highest emission quantum yields reported so far for films of Eu(3+)-containing hybrids (0.34 +/- 0.03) and an interesting potential as new luminescent solar concentrators (LSCs) with an optical conversion efficiency of similar to 4%. The ratio between the light guided to the film edges and the one emitted by the surface of the film was quantified through the mapping of the intensity of the red pixels (in the RGB color model) from a film image. This quantification enabled a more accurate estimation of the transport losses due to the scattering of the emitted light in the film (0.40), thereby correcting the initial optical conversion efficiency to a value of 1.7%.FCT - PTDC/CTM/101324/2008COMPETEFEDE

    OMRT-3. Longitudinal analysis of diffuse glioma reveals cell state dynamics at recurrence associated with changes in genetics and the microenvironment

    Get PDF
    Diffuse glioma is an aggressive brain cancer that is characterized by a poor prognosis and a universal resistance to therapy. The evolutionary processes behind this resistance remain unclear. Previous studies by the Glioma Longitudinal Analysis (GLASS) Consortium have indicated that therapy-induced selective pressures shape the genetic evolution of glioma in a stochastic manner. However, single-cell studies have revealed that malignant glioma cells are highly plastic and transition their cell state in response to diverse challenges, including changes in the microenvironment and the administration of standard-of-care therapy. Interactions between these factors remain poorly understood, making it difficult to predict how a patient’s tumor will evolve from diagnosis to recurrence. To interrogate the factors driving therapy resistance in diffuse glioma, we collected and analyzed RNA- and/or DNA-sequencing data from temporally separated tumor pairs of 292 adult patients with IDH-wild-type or IDH-mutant glioma. Recurrent tumors exhibited diverse changes that were attributable to changes in anatomic composition, somatic alterations, and microenvironment interactions. Hypermutation and acquired CDKN2A homozygous deletions associated with an increase in proliferating stem-like malignant cells at recurrence in both glioma subtypes, reflecting active tumor expansion. IDH-wild-type tumors were more invasive at recurrence, and their malignant cells exhibited increased expression of neuronal signaling programs that reflected a possible role for neuronal interactions in promoting glioma progression. Mesenchymal transition was associated with the presence of a specific myeloid cell state defined by unique ligand-receptor interactions with malignant cells, providing opportunities to target this transition through therapy. Collectively, our results uncover recurrence-associated changes in genetics and the microenvironment that can be targeted to shape disease progression following initial diagnosis

    Analysis of energy transfer processes in 'Yb POT. 3+'-'Tb POT. 3+' co-doped, low-silica calcium aluminosilicate glasses

    Get PDF
    Energy transfer processes in Yb3+-Tb3+ co-doped, low-silica calcium aluminosilicate glasses were analyzed. Luminescence and time-resolved measurements were used to study upconversion processes, such as Yb-Tb cooperative sensitization, Yb-Yb cooperative luminescence, and Yb-Tb cross relaxation. The quantum cross relaxation efficiency was evaluated as a function on the Yb3+ concentration, and the maximum estimated value was approximately 51%. In addition, the intensity of the upconversion luminescence from the Tb3+:5D4 level decreased by two orders of magnitude comparing the value at room temperature with that at 123 K. As a consequence, Yb-Yb cooperative luminescence around 500 nm became comparable with the intensity of upconversion from the Tb3+:5D4 level. Furthermore, a dependence of the upconversion kinetics luminescence on temperature was observed. The upconversion rise time was constant and equal to 65 μs for temperatures between 296 to 473 K and decreased from 65 to 19 μs, without variation in the decay part, when the temperature was lowered from 296 to 123 K. These results were explained by a phonon-assisted cooperative sensitization process for the population of the Tb3+:5D4 level.CAPESINCT-INAM
    corecore