141 research outputs found

    Conformal proper times according to the Woodhouse causal axiomatics of relativistic spacetimes

    Full text link
    On the basis of the Woodhouse causal axiomatics, we show that conformal proper times and an extra variable in addition to those of space and time, precisely and physically identified from experimental examples, together give a physical justification for the `chronometric hypothesis' of general relativity. Indeed, we show that, with a lack of these latter two ingredients, no clock paradox solution exists in which the clock and message functions are solely at the origin of the asymmetry. These proper times originate from a given conformal structure of the spacetime when ascribing different compatible projective structures to each Woodhouse particle, and then, each defines a specific Weylian sheaf structure. In addition, the proper time parameterizations, as two point functions, cannot be defined irrespective of the processes in the relative changes of physical characteristics. These processes are included via path-dependent conformal scale factors, which act like sockets for any kind of physical interaction and also represent the values of the variable associated with the extra dimension. As such, the differential aging differs far beyond the first and second clock effects in Weyl geometries, with the latter finally appearing to not be suitable.Comment: 25 pages, 2 figure

    Simultaneity as an Invariant Equivalence Relation

    Full text link
    This paper deals with the concept of simultaneity in classical and relativistic physics as construed in terms of group-invariant equivalence relations. A full examination of Newton, Galilei and Poincar\'e invariant equivalence relations in R4\R^4 is presented, which provides alternative proofs, additions and occasionally corrections of results in the literature, including Malament's theorem and some of its variants. It is argued that the interpretation of simultaneity as an invariant equivalence relation, although interesting for its own sake, does not cut in the debate concerning the conventionality of simultaneity in special relativity.Comment: Some corrections, mostly of misprints. Keywords: special relativity, simultaneity, invariant equivalence relations, Malament's theore

    Time-of-arrival formalism for the relativistic particle

    Get PDF
    A suitable operator for the time-of-arrival at a detector is defined for the free relativistic particle in 3+1 dimensions. For each detector position, there exists a subspace of detected states in the Hilbert space of solutions to the Klein Gordon equation. Orthogonality and completeness of the eigenfunctions of the time-of-arrival operator apply inside this subspace, opening up a standard probabilistic interpretation.Comment: 16 pages, no figures, uses LaTeX. The section "Interpretation" has been completely rewritten and some errors correcte

    Generation of Closed Timelike Curves with Rotating Superconductors

    Get PDF
    The spacetime metric around a rotating SuperConductive Ring (SCR) is deduced from the gravitomagnetic London moment in rotating superconductors. It is shown that theoretically it is possible to generate Closed Timelike Curves (CTC) with rotating SCRs. The possibility to use these CTC's to travel in time as initially idealized by G\"{o}del is investigated. It is shown however, that from a technology and experimental point of view these ideas are impossible to implement in the present context.Comment: 9 pages. Submitted to Classical and Quantum Gravit

    Reconstructing Bohr's Reply to EPR in Algebraic Quantum Theory

    Full text link
    Halvorson and Clifton have given a mathematical reconstruction of Bohr's reply to Einstein, Podolsky and Rosen (EPR), and argued that this reply is dictated by the two requirements of classicality and objectivity for the description of experimental data, by proving consistency between their objectivity requirement and a contextualized version of the EPR reality criterion which had been introduced by Howard in his earlier analysis of Bohr's reply. In the present paper, we generalize the above consistency theorem, with a rather elementary proof, to a general formulation of EPR states applicable to both non-relativistic quantum mechanics and algebraic quantum field theory; and we clarify the elements of reality in EPR states in terms of Bohr's requirements of classicality and objectivity, in a general formulation of algebraic quantum theory.Comment: 13 pages, Late

    Network Cosmology

    Full text link
    Prediction and control of the dynamics of complex networks is a central problem in network science. Structural and dynamical similarities of different real networks suggest that some universal laws might accurately describe the dynamics of these networks, albeit the nature and common origin of such laws remain elusive. Here we show that the causal network representing the large-scale structure of spacetime in our accelerating universe is a power-law graph with strong clustering, similar to many complex networks such as the Internet, social, or biological networks. We prove that this structural similarity is a consequence of the asymptotic equivalence between the large-scale growth dynamics of complex networks and causal networks. This equivalence suggests that unexpectedly similar laws govern the dynamics of complex networks and spacetime in the universe, with implications to network science and cosmology

    Standard and Generalized Newtonian Gravities as ``Gauge'' Theories of the Extended Galilei Group - I: The Standard Theory

    Full text link
    Newton's standard theory of gravitation is reformulated as a {\it gauge} theory of the {\it extended} Galilei Group. The Action principle is obtained by matching the {\it gauge} technique and a suitable limiting procedure from the ADM-De Witt action of general relativity coupled to a relativistic mass-point.Comment: 51 pages , compress, uuencode LaTex fil

    Proper time and Minkowski structure on causal graphs

    Get PDF
    For causal graphs we propose a definition of proper time which for small scales is based on the concept of volume, while for large scales the usual definition of length is applied. The scale where the change from "volume" to "length" occurs is related to the size of a dynamical clock and defines a natural cut-off for this type of clock. By changing the cut-off volume we may probe the geometry of the causal graph on different scales and therey define a continuum limit. This provides an alternative to the standard coarse graining procedures. For regular causal lattice (like e.g. the 2-dim. light-cone lattice) this concept can be proven to lead to a Minkowski structure. An illustrative example of this approach is provided by the breather solutions of the Sine-Gordon model on a 2-dimensional light-cone lattice.Comment: 15 pages, 4 figure

    The structure of causal sets

    Get PDF
    More often than not, recently popular structuralist interpretations of physical theories leave the central concept of a structure insufficiently precisified. The incipient causal sets approach to quantum gravity offers a paradigmatic case of a physical theory predestined to be interpreted in structuralist terms. It is shown how employing structuralism lends itself to a natural interpretation of the physical meaning of causal sets theory. Conversely, the conceptually exceptionally clear case of causal sets is used as a foil to illustrate how a mathematically informed rigorous conceptualization of structure serves to identify structures in physical theories. Furthermore, a number of technical issues infesting structuralist interpretations of physical theories such as difficulties with grounding the identity of the places of highly symmetrical physical structures in their relational profile and what may resolve these difficulties can be vividly illustrated with causal sets.Comment: 19 pages, 4 figure

    Synchronization Gauges and the Principles of Special Relativity

    Full text link
    The axiomatic bases of Special Relativity Theory (SRT) are thoroughly re-examined from an operational point of view, with particular emphasis on the status of Einstein synchronization in the light of the possibility of arbitrary synchronization procedures in inertial reference frames. Once correctly and explicitly phrased, the principles of SRT allow for a wide range of `theories' that differ from the standard SRT only for the difference in the chosen synchronization procedures, but are wholly equivalent to SRT in predicting empirical facts. This results in the introduction, in the full background of SRT, of a suitable synchronization gauge. A complete hierarchy of synchronization gauges is introduced and elucidated, ranging from the useful Selleri synchronization gauge (which should lead, according to Selleri, to a multiplicity of theories alternative to SRT) to the more general Mansouri-Sexl synchronization gauge and, finally, to the even more general Anderson-Vetharaniam-Stedman's synchronization gauge. It is showed that all these gauges do not challenge the SRT, as claimed by Selleri, but simply lead to a number of formalisms which leave the geometrical structure of Minkowski spacetime unchanged. Several aspects of fundamental and applied interest related to the conventional aspect of the synchronization choice are discussed, encompassing the issue of the one-way velocity of light on inertial and rotating reference frames, the GPS's working, and the recasting of Maxwell equations in generic synchronizations. Finally, it is showed how the gauge freedom introduced in SRT can be exploited in order to give a clear explanation of the Sagnac effect for counter-propagating matter beams.Comment: 56 pages, 3 eps figures, invited paper; to appear in Foundations of Physics (Special Issue to honor Prof. Franco Selleri on his 70th birthday
    corecore