141 research outputs found
Conformal proper times according to the Woodhouse causal axiomatics of relativistic spacetimes
On the basis of the Woodhouse causal axiomatics, we show that conformal
proper times and an extra variable in addition to those of space and time,
precisely and physically identified from experimental examples, together give a
physical justification for the `chronometric hypothesis' of general relativity.
Indeed, we show that, with a lack of these latter two ingredients, no clock
paradox solution exists in which the clock and message functions are solely at
the origin of the asymmetry. These proper times originate from a given
conformal structure of the spacetime when ascribing different compatible
projective structures to each Woodhouse particle, and then, each defines a
specific Weylian sheaf structure. In addition, the proper time
parameterizations, as two point functions, cannot be defined irrespective of
the processes in the relative changes of physical characteristics. These
processes are included via path-dependent conformal scale factors, which act
like sockets for any kind of physical interaction and also represent the values
of the variable associated with the extra dimension. As such, the differential
aging differs far beyond the first and second clock effects in Weyl geometries,
with the latter finally appearing to not be suitable.Comment: 25 pages, 2 figure
Simultaneity as an Invariant Equivalence Relation
This paper deals with the concept of simultaneity in classical and
relativistic physics as construed in terms of group-invariant equivalence
relations. A full examination of Newton, Galilei and Poincar\'e invariant
equivalence relations in is presented, which provides alternative
proofs, additions and occasionally corrections of results in the literature,
including Malament's theorem and some of its variants. It is argued that the
interpretation of simultaneity as an invariant equivalence relation, although
interesting for its own sake, does not cut in the debate concerning the
conventionality of simultaneity in special relativity.Comment: Some corrections, mostly of misprints. Keywords: special relativity,
simultaneity, invariant equivalence relations, Malament's theore
Time-of-arrival formalism for the relativistic particle
A suitable operator for the time-of-arrival at a detector is defined for the
free relativistic particle in 3+1 dimensions. For each detector position, there
exists a subspace of detected states in the Hilbert space of solutions to the
Klein Gordon equation. Orthogonality and completeness of the eigenfunctions of
the time-of-arrival operator apply inside this subspace, opening up a standard
probabilistic interpretation.Comment: 16 pages, no figures, uses LaTeX. The section "Interpretation" has
been completely rewritten and some errors correcte
Generation of Closed Timelike Curves with Rotating Superconductors
The spacetime metric around a rotating SuperConductive Ring (SCR) is deduced
from the gravitomagnetic London moment in rotating superconductors. It is shown
that theoretically it is possible to generate Closed Timelike Curves (CTC) with
rotating SCRs. The possibility to use these CTC's to travel in time as
initially idealized by G\"{o}del is investigated. It is shown however, that
from a technology and experimental point of view these ideas are impossible to
implement in the present context.Comment: 9 pages. Submitted to Classical and Quantum Gravit
Reconstructing Bohr's Reply to EPR in Algebraic Quantum Theory
Halvorson and Clifton have given a mathematical reconstruction of Bohr's
reply to Einstein, Podolsky and Rosen (EPR), and argued that this reply is
dictated by the two requirements of classicality and objectivity for the
description of experimental data, by proving consistency between their
objectivity requirement and a contextualized version of the EPR reality
criterion which had been introduced by Howard in his earlier analysis of Bohr's
reply. In the present paper, we generalize the above consistency theorem, with
a rather elementary proof, to a general formulation of EPR states applicable to
both non-relativistic quantum mechanics and algebraic quantum field theory; and
we clarify the elements of reality in EPR states in terms of Bohr's
requirements of classicality and objectivity, in a general formulation of
algebraic quantum theory.Comment: 13 pages, Late
Network Cosmology
Prediction and control of the dynamics of complex networks is a central
problem in network science. Structural and dynamical similarities of different
real networks suggest that some universal laws might accurately describe the
dynamics of these networks, albeit the nature and common origin of such laws
remain elusive. Here we show that the causal network representing the
large-scale structure of spacetime in our accelerating universe is a power-law
graph with strong clustering, similar to many complex networks such as the
Internet, social, or biological networks. We prove that this structural
similarity is a consequence of the asymptotic equivalence between the
large-scale growth dynamics of complex networks and causal networks. This
equivalence suggests that unexpectedly similar laws govern the dynamics of
complex networks and spacetime in the universe, with implications to network
science and cosmology
Standard and Generalized Newtonian Gravities as ``Gauge'' Theories of the Extended Galilei Group - I: The Standard Theory
Newton's standard theory of gravitation is reformulated as a {\it gauge}
theory of the {\it extended} Galilei Group. The Action principle is obtained by
matching the {\it gauge} technique and a suitable limiting procedure from the
ADM-De Witt action of general relativity coupled to a relativistic mass-point.Comment: 51 pages , compress, uuencode LaTex fil
Proper time and Minkowski structure on causal graphs
For causal graphs we propose a definition of proper time which for small
scales is based on the concept of volume, while for large scales the usual
definition of length is applied. The scale where the change from "volume" to
"length" occurs is related to the size of a dynamical clock and defines a
natural cut-off for this type of clock. By changing the cut-off volume we may
probe the geometry of the causal graph on different scales and therey define a
continuum limit. This provides an alternative to the standard coarse graining
procedures. For regular causal lattice (like e.g. the 2-dim. light-cone
lattice) this concept can be proven to lead to a Minkowski structure. An
illustrative example of this approach is provided by the breather solutions of
the Sine-Gordon model on a 2-dimensional light-cone lattice.Comment: 15 pages, 4 figure
The structure of causal sets
More often than not, recently popular structuralist interpretations of
physical theories leave the central concept of a structure insufficiently
precisified. The incipient causal sets approach to quantum gravity offers a
paradigmatic case of a physical theory predestined to be interpreted in
structuralist terms. It is shown how employing structuralism lends itself to a
natural interpretation of the physical meaning of causal sets theory.
Conversely, the conceptually exceptionally clear case of causal sets is used as
a foil to illustrate how a mathematically informed rigorous conceptualization
of structure serves to identify structures in physical theories. Furthermore, a
number of technical issues infesting structuralist interpretations of physical
theories such as difficulties with grounding the identity of the places of
highly symmetrical physical structures in their relational profile and what may
resolve these difficulties can be vividly illustrated with causal sets.Comment: 19 pages, 4 figure
Synchronization Gauges and the Principles of Special Relativity
The axiomatic bases of Special Relativity Theory (SRT) are thoroughly
re-examined from an operational point of view, with particular emphasis on the
status of Einstein synchronization in the light of the possibility of arbitrary
synchronization procedures in inertial reference frames. Once correctly and
explicitly phrased, the principles of SRT allow for a wide range of `theories'
that differ from the standard SRT only for the difference in the chosen
synchronization procedures, but are wholly equivalent to SRT in predicting
empirical facts. This results in the introduction, in the full background of
SRT, of a suitable synchronization gauge. A complete hierarchy of
synchronization gauges is introduced and elucidated, ranging from the useful
Selleri synchronization gauge (which should lead, according to Selleri, to a
multiplicity of theories alternative to SRT) to the more general Mansouri-Sexl
synchronization gauge and, finally, to the even more general
Anderson-Vetharaniam-Stedman's synchronization gauge. It is showed that all
these gauges do not challenge the SRT, as claimed by Selleri, but simply lead
to a number of formalisms which leave the geometrical structure of Minkowski
spacetime unchanged. Several aspects of fundamental and applied interest
related to the conventional aspect of the synchronization choice are discussed,
encompassing the issue of the one-way velocity of light on inertial and
rotating reference frames, the GPS's working, and the recasting of Maxwell
equations in generic synchronizations. Finally, it is showed how the gauge
freedom introduced in SRT can be exploited in order to give a clear explanation
of the Sagnac effect for counter-propagating matter beams.Comment: 56 pages, 3 eps figures, invited paper; to appear in Foundations of
Physics (Special Issue to honor Prof. Franco Selleri on his 70th birthday
- …
