177 research outputs found

    Edaxadiene: A New Bioactive Diterpene from Mycobacterium tuberculosis

    Get PDF
    Mycobacterium tuberculosis remains a widespread and devastating human pathogen. Presented here is the characterization of an atypical class I diterpene cyclase from M. tuberculosis that catalyzes an unusual cyclization reaction in converting the known M. tuberculosis metabolite halimadienyl diphosphate to a further cyclized novel diterpene, which we have termed edaxadiene, as it directly inhibits maturation of the phagosomal compartment in which the bacterium is taken up during infection

    Magnetic stray fields in nanoscale magnetic tunnel junctions

    Get PDF
    The magnetic stray field is an unavoidable consequence of ferromagnetic devices and sensors leading to a natural asymmetry in magnetic properties. Such asymmetry is particularly undesirable for magnetic random access memory applications where the free layer can exhibit bias. Using atomistic dipole-dipole calculations we numerically simulate the stray magnetic field emanating from the magnetic layers of a magnetic memory device with different geometries. We find that edge effects dominate the overall stray magnetic field in patterned devices and that a conventional synthetic antiferromagnet structure is only partially able to compensate the field at the free layer position. A granular reference layer is seen to provide near-field flux closure while additional patterning defects add significant complexity to the stray field in nanoscale devices. Finally we find that the stray field from a nanoscale antiferromagnet is surprisingly non-zero arising from the imperfect cancellation of magnetic sublattices due to edge defects. Our findings provide an outline of the role of different layer structures and defects in the effective stray magnetic field in nanoscale magnetic random access memory devices and atomistic calculations provide a useful tools to study the stray field effects arising from a wide range of defects

    Modern microwave methods in solid state inorganic materials chemistry: from fundamentals to manufacturing

    Get PDF
    No abstract available

    Learning form Nature to improve the heat generation of iron-oxide nanoparticles for magnetic hyperthermia applications.

    Get PDF
    The performance of magnetic nanoparticles is intimately entwined with their structure, mean size and magnetic anisotropy. Besides, ensembles offer a unique way of engineering the magnetic response by modifying the strength of the dipolar interactions between particles. Here we report on an experimental and theoretical analysis of magnetic hyperthermia, a rapidly developing technique in medical research and oncology. Experimentally, we demonstrate that single-domain cubic iron oxide particles resembling bacterial magnetosomes have superior magnetic heating efficiency compared to spherical particles of similar sizes. Monte Carlo simulations at the atomic level corroborate the larger anisotropy of the cubic particles in comparison with the spherical ones, thus evidencing the beneficial role of surface anisotropy in the improved heating power. Moreover we establish a quantitative link between the particle assembling, the interactions and the heating properties. This knowledge opens new perspectives for improved hyperthermia, an alternative to conventional cancer therapies
    corecore