44 research outputs found

    Enhanced production of multi-strange hadrons in high-multiplicity proton-proton collisions

    No full text
    At sufficiently high temperature and energy density, nuclear matter undergoes a transition to a phase in which quarks and gluons are not confined: the quark-gluon plasma (QGP). Such an exotic state of strongly interacting quantum chromodynamics matter is produced in the laboratory in heavy nuclei high-energy collisions, where an enhanced production of strange hadrons is observed. Strangeness enhancement, originally proposed as a signature of QGP formation in nuclear collisions, is more pronounced for multi-strange baryons. Several effects typical of heavy-ion phenomenology have been observed in high-multiplicity proton-proton (pp) collisions, but the enhanced production of multi-strange particles has not been reported so far. Here we present the first observation of strangeness enhancement in high-multiplicity proton-proton collisions. We find that the integrated yields of strange and multi-strange particles, relative to pions, increases significantly with the event charged-particle multiplicity. The measurements are in remarkable agreement with the p-Pb collision results, indicating that the phenomenon is related to the final system created in the collision. In high-multiplicity events strangeness production reaches values similar to those observed in Pb-Pb collisions, where a QGP is formed. © 2017 Macmillan Publishers Limited, part of Springer Nature. All rights reserved

    Calibration of the photon spectrometer PHOS of the ALICE experiment

    No full text
    The procedure for the energy calibration of the high granularity electromagnetic calorimeter PHOS of the ALICE experiment is presented. The methods used to perform the relative gain calibration, to evaluate the geometrical alignment and the corresponding correction of the absolute energy scale, to obtain the nonlinearity correction coefficients and finally, to calculate the time-dependent calibration corrections, are discussed and illustrated by the PHOS performance in proton-proton (pp) collisions at s=13 TeV. After applying all corrections, the achieved mass resolutions for π0 and η mesons for pT > 1.7 GeV/c are σm π0 = 4.56 ± 0.03 MeV/c2 and σm η = 15.3 ± 1.0 MeV/c2, respectively. © 2019 CERN for the benefit of the Alice collaboration.

    Production of pions, kaons, (anti-)protons and ϕ mesons in Xe–Xe collisions at √sNN = 5.44 TeV

    No full text
    The first measurement of the production of pions, kaons, (anti-)protons and φ mesons at midrapidity in Xe–Xe collisions at √sNN = 5.44 TeV is presented. Transverse momentum (pT) spectra and pT-integrated yields are extracted in several centrality intervals bridging from p–Pb to mid-central Pb–Pb collisions in terms of final-state multiplicity. The study of Xe–Xe and Pb–Pb collisions allows systems at similar charged-particle multiplicities but with different initial geometrical eccentricities to be investigated. Adetailed comparison of the spectral shapes in the two systemsrevealsanoppositebehaviourforradialandellipticflow. In particular, this study shows that the radial flow does not depend on the colliding system when compared at similar charged-particle multiplicity. In terms of hadron chemistry, the previously observed smooth evolution of particle ratios with multiplicity from small to large collision systems is also found to hold in Xe–Xe. In addition, our results confirm that two remarkable features of particle production at LHC energies are also valid in the collision of medium-sized nuclei: the lower proton-to-pion ratio with respect to the thermal model expectations and the increase of the φ-to-pion ratio with increasing final-state multiplicity

    Production of pions, kaons, (anti-)protons and ϕ mesons in Xe–Xe collisions at √sNN = 5.44 TeV

    No full text
    The first measurement of the production of pions, kaons, (anti-)protons and ϕ mesons at midrapidity in Xe–Xe collisions at √sNN=5.44 TeV is presented. Transverse momentum (pT) spectra and pT-integrated yields are extracted in several centrality intervals bridging from p–Pb to mid-central Pb–Pb collisions in terms of final-state multiplicity. The study of Xe–Xe and Pb–Pb collisions allows systems at similar charged-particle multiplicities but with different initial geometrical eccentricities to be investigated. A detailed comparison of the spectral shapes in the two systems reveals an opposite behaviour for radial and elliptic flow. In particular, this study shows that the radial flow does not depend on the colliding system when compared at similar charged-particle multiplicity. In terms of hadron chemistry, the previously observed smooth evolution of particle ratios with multiplicity from small to large collision systems is also found to hold in Xe–Xe. In addition, our results confirm that two remarkable features of particle production at LHC energies are also valid in the collision of medium-sized nuclei: the lower proton-to-pion ratio with respect to the thermal model expectations and the increase of the ϕ-to-pion ratio with increasing final-state multiplicity

    Production of pions, kaons, (anti-)protons and ϕ mesons in Xe–Xe collisions at √sNN = 5.44 TeV

    No full text
    The first measurement of the production of pions, kaons, (anti-)protons and ϕ mesons at midrapidity in Xe–Xe collisions at √sNN=5.44 TeV is presented. Transverse momentum (pT) spectra and pT-integrated yields are extracted in several centrality intervals bridging from p–Pb to mid-central Pb–Pb collisions in terms of final-state multiplicity. The study of Xe–Xe and Pb–Pb collisions allows systems at similar charged-particle multiplicities but with different initial geometrical eccentricities to be investigated. A detailed comparison of the spectral shapes in the two systems reveals an opposite behaviour for radial and elliptic flow. In particular, this study shows that the radial flow does not depend on the colliding system when compared at similar charged-particle multiplicity. In terms of hadron chemistry, the previously observed smooth evolution of particle ratios with multiplicity from small to large collision systems is also found to hold in Xe–Xe. In addition, our results confirm that two remarkable features of particle production at LHC energies are also valid in the collision of medium-sized nuclei: the lower proton-to-pion ratio with respect to the thermal model expectations and the increase of the ϕ-to-pion ratio with increasing final-state multiplicity

    Upsilon production and nuclear modification at forward rapidity in Pb-Pb collisions at root S-NN=5.02 TeV

    Get PDF
    The production of ϒ mesons in Pb–Pb collisions at a centre-of-mass energy per nucleon pair sNN=5.02 TeV is measured with the muon spectrometer of the ALICE detector at the LHC. The yields as well as the nuclear modification factors are determined in the forward rapidity region 2.5<y<4.0, as a function of rapidity, transverse momentum and collision centrality. The results show that the production of the ϒ(1S) meson is suppressed by a factor of about three with respect to the production in proton–proton collisions. For the first time, a significant signal for the ϒ(2S) meson is observed at forward rapidity, indicating a suppression stronger by about a factor 2–3 with respect to the ground state. The measurements are compared with transport, hydrodynamic, comover and statistical hadronisation model calculations

    Upsilon production and nuclear modification at forward rapidity in Pb-Pb collisions at root S-NN=5.02 TeV

    Get PDF
    The production of \u3d2 mesons in Pb\u2013Pb collisions at a centre-of-mass energy per nucleon pair sNN=5.02 TeV is measured with the muon spectrometer of the ALICE detector at the LHC. The yields as well as the nuclear modification factors are determined in the forward rapidity region 2.5<4.0, as a function of rapidity, transverse momentum and collision centrality. The results show that the production of the \u3d2(1S) meson is suppressed by a factor of about three with respect to the production in proton\u2013proton collisions. For the first time, a significant signal for the \u3d2(2S) meson is observed at forward rapidity, indicating a suppression stronger by about a factor 2\u20133 with respect to the ground state. The measurements are compared with transport, hydrodynamic, comover and statistical hadronisation model calculations

    Multiharmonic Correlations of Different Flow Amplitudes in Pb-Pb Collisions at √sNN=2.76  TeV

    No full text
    The event-by-event correlations between three flow amplitudes are measured for the first time in Pb-Pb collisions, using higher-order symmetric cumulants. We find that different three-harmonic correlations develop during the collective evolution of the medium when compared to correlations that exist in the initial state. These new results cannot be interpreted in terms of previous lower-order flow measurements since contributions from two-harmonic correlations are explicitly removed in the new observables. A comparison to Monte Carlo simulations provides new and independent constraints for the initial conditions and system properties of nuclear matter created in heavy-ion collisions

    Λc+ Production and Baryon-to-Meson Ratios in pp and p-Pb Collisions at √sNN=5.02 TeV at the LHC

    No full text
    The prompt production of the charm baryon Λ+c and the Λ+c/D0 production ratios were measured at midrapidity with the ALICE detector in pp and p-Pb collisions at √sNN=5.02 TeV. These new measurements show a clear decrease of the Λ+c/D0 ratio with increasing transverse momentum (pT) in both collision systems in the range 2<pT<12 GeV/c, exhibiting similarities with the light-flavor baryon-to-meson ratios p/π and Λ/K0S. At low pT, predictions that include additional color-reconnection mechanisms beyond the leading-color approximation, assume the existence of additional higher-mass charm-baryon states, or include hadronization via coalescence can describe the data, while predictions driven by charm-quark fragmentation processes measured in e+e− and e−p collisions significantly underestimate the data. The results presented in this Letter provide significant evidence that the established assumption of universality (colliding-system independence) of parton-to-hadron fragmentation is not sufficient to describe charm-baryon production in hadronic collisions at LHC energies.publishedVersio
    corecore