138 research outputs found

    Oxygen-induced p(2x3) reconstruction on Mo(112) studied by LEED and STM

    No full text
    The open trough-and-row Mo(112) surface serves as substrate for the epitaxial growth of MoO2. In the early stage of oxygen exposure, oxygen chemisorption induces a p(2x3) surface reconstruction of the missing row type on Mo(112). The surface structure of this reconstructed surface has been studied in detail by low-energy electron diffraction and scanning tunneling microscope. The experimental findings can be explained based on the effective medium theory for oxygen adsorption on transition-metal surfaces, providing a structure model for the oxygen-modified Mo(112) surface. The structure model allows the discussion of the oxygen-chemisorbed surface phase as a possible precursor state fo

    Descendants of the first stars: the distinct chemical signature of second generation stars

    Full text link
    Extremely metal-poor (EMP) stars in the Milky Way (MW) allow us to infer the properties of their progenitors by comparing their chemical composition to the metal yields of the first supernovae. This method is most powerful when applied to mono-enriched stars, i.e. stars that formed from gas that was enriched by only one previous supernova. We present a novel diagnostic to identify this subclass of EMP stars. We model the first generations of star formation semi-analytically, based on dark matter halo merger trees that yield MW-like halos at the present day. Radiative and chemical feedback are included self-consistently and we trace all elements up to zinc. Mono-enriched stars account for only 1%\sim 1\% of second generation stars in our fiducial model and we provide an analytical formula for this probability. We also present a novel analytical diagnostic to identify mono-enriched stars, based on the metal yields of the first supernovae. This new diagnostic allows us to derive our main results independently from the specific assumptions made regarding Pop III star formation, and we apply it to a set of observed EMP stars to demonstrate its strengths and limitations. Our results may provide selection criteria for current and future surveys and therefore contribute to a deeper understanding of EMP stars and their progenitors.Comment: 18 pages, 20 figures, published in MNRA

    Origin of metals in old Milky Way halo stars based on GALAH and Gaia

    Get PDF
    © 2021 The Royal Astronomical Society. This is the accepted manuscript version of an article which has been published in final form at https://doi.org/10.1093/mnras/stab1982Stellar and supernova nucleosynthesis in the first few billion years of the cosmic history have set the scene for early structure formation in the Universe, while little is known about their nature. Making use of stellar physical parameters measured by GALAH Data Release 3 with accurate astrometry from the Gaia EDR3, we have selected 100\sim 100 old main-sequence turn-off stars (ages 12\gtrsim 12 Gyrs) with kinematics compatible with the Milky Way stellar halo population in the Solar neighborhood. Detailed homogeneous elemental abundance estimates by GALAH DR3 are compared with supernova yield models of Pop~III (zero-metal) core-collapse supernovae (CCSNe), normal (non-zero-metal) CCSNe, and Type Ia supernovae (SN Ia) to examine which of the individual yields or their combinations best reproduce the observed elemental abundance patterns for each of the old halo stars ("OHS"). We find that the observed abundances in the OHS with [Fe/H]>1.5>-1.5 are best explained by contributions from both CCSNe and SN~Ia, where the fraction of SN~Ia among all the metal-enriching SNe is up to 10-20 % for stars with high [Mg/Fe] ratios and up to 20-27 % for stars with low [Mg/Fe] ratios, depending on the assumption about the relative fraction of near-Chandrasekhar-mass SNe Ia progenitors. The results suggest that, in the progenitor systems of the OHS with [Fe/H]>1.5>-1.5, \sim 50-60% of Fe mass originated from normal CCSNe at the earliest phases of the Milky Way formation. These results provide an insight into the birth environments of the oldest stars in the Galactic halo.Peer reviewedFinal Published versio

    Bounds on neutrino masses from leptogenesis in type-II see-saw models

    Full text link
    The presence of the triplet ΔL\Delta_{L} in left-right symmetric theories leads to type-II see-saw mechanism for the neutrino masses. In these models, assuming a normal mass hierarchy for the heavy Majorana neutrinos, we derive a lower bound on the mass of the lightest of heavy Majorana neutrino from the leptogenesis constraint. From this bound we establish a consistent picture for the hierarchy of heavy Majorana neutrinos in a class of left right symmetric models in which we identify the neutrino Dirac mass matrix with that of Fritzsch type charged lepton mass matrix. It is shown that these values are compatible with the current neutrino oscillation data.Comment: minor typos corrected, references added, match with published versio

    Low energy consequences from supersymmetric models with left-right symmetry

    Get PDF
    We consider several low energy consequences arising from a class of supersymmetric models based on the gauge groups SU(2)L×SU(2)R×U(1)BLSU(2)_L\times SU(2)_R \times U(1)_{B-L} and SU(4)C×SU(2)L×SU(2)RSU(4)_C\times SU(2)_L \times SU(2)_R in which the gauge hierarchy and μ\mu problems have been resolved. There are important constraints on the MSSM parameters tanβ(mt/mb)\tan \beta (\simeq m_t/m_b), BB and μ\mu, and we discuss how they are reconciled with radiative electroweak breaking. We also consider the ensuing sparticle and Higgs spectroscopy, as well as the decays bsγb\to s \gamma and μeγ\mu \to e \gamma. The latter process may be amenable to experimental tests through an order of magnitude increase in sensitivity.Comment: 17 pages, latex2

    Beyond the standard seesaw: neutrino masses from Kahler operators and broken supersymmetry

    Get PDF
    We investigate supersymmetric scenarios in which neutrino masses are generated by effective d=6 operators in the Kahler potential, rather than by the standard d=5 superpotential operator. First, we discuss some general features of such effective operators, also including SUSY-breaking insertions, and compute the relevant renormalization group equations. Contributions to neutrino masses arise at low energy both at the tree level and through finite threshold corrections. In the second part we present simple explicit realizations in which those Kahler operators arise by integrating out heavy SU(2)_W triplets, as in the type II seesaw. Distinct scenarios emerge, depending on the mechanism and the scale of SUSY-breaking mediation. In particular, we propose an appealing and economical picture in which the heavy seesaw mediators are also messengers of SUSY breaking. In this case, strong correlations exist among neutrino parameters, sparticle and Higgs masses, as well as lepton flavour violating processes. Hence, this scenario can be tested at high-energy colliders, such as the LHC, and at lower energy experiments that measure neutrino parameters or search for rare lepton decays.Comment: LaTeX, 34 pages; some corrections in Section
    corecore