804 research outputs found

    An Integrated Tool for System Analysis of Sample Return Vehicles

    Get PDF
    The next important step in space exploration is the return of sample materials from extraterrestrial locations to Earth for analysis. Most mission concepts that return sample material to Earth share one common element: an Earth entry vehicle. The analysis and design of entry vehicles is multidisciplinary in nature, requiring the application of mass sizing, flight mechanics, aerodynamics, aerothermodynamics, thermal analysis, structural analysis, and impact analysis tools. Integration of a multidisciplinary problem is a challenging task; the execution process and data transfer among disciplines should be automated and consistent. This paper describes an integrated analysis tool for the design and sizing of an Earth entry vehicle. The current tool includes the following disciplines: mass sizing, flight mechanics, aerodynamics, aerothermodynamics, and impact analysis tools. Python and Java languages are used for integration. Results are presented and compared with the results from previous studies

    Mirror formation control in the vicinity of an asteroid

    Get PDF
    Two strategies are presented for the positioning and control of a spacecraft formation designed to focus sunlight onto a point on the surface of asteroid, thereby sublimating the material and ejecting debris creating thrust. In the first approach, the formation is located at artficial equilibrium points around the asteroid and controlled using the force from the solar radiation pressure. The second approach determines the optimal periodic formation orbits, subject to the gravitational perturbations from the asteroid, the solar radiation pressure and the control acceleration derived from a control law

    Adrenal lesions found incidentally: how to improve clinical and cost-effectiveness

    Get PDF
    Introduction Adrenal incidentalomas are lesions that are incidentally identified while scanning for other conditions. While most are benign and hormonally non-functional, around 20% are malignant and/or hormonally active, requiring prompt intervention. Malignant lesions can be aggressive and life-threatening, while hormonally active tumours cause various endocrine disorders, with significant morbidity and mortality. Despite this, management of patients with adrenal incidentalomas is variable, with no robust evidence base. This project aimed to establish more effective and timely management of these patients. Methods We developed a web-based, electronic Adrenal Incidentaloma Management System (eAIMS), which incorporated the evidence-based and National Health Service–aligned 2016 European guidelines. The system captures key clinical, biochemical and radiological information necessary for adrenal incidentaloma patient management and generates a pre-populated outcome letter, saving clinical and administrative time while ensuring timely management plans with enhanced safety. Furthermore, we developed a prioritisation strategy, with members of the multidisciplinary team, which prioritised high-risk individuals for detailed discussion and management. Patient focus groups informed process-mapping and multidisciplinary team process re-design and patient information leaflet development. The project was partnered by University Hospital of South Manchester to maximise generalisability. Results Implementation of eAIMS, along with improvements in the prioritisation strategy, resulted in a 49% reduction in staff hands-on time, as well as a 78% reduction in the time from adrenal incidentaloma identification to multidisciplinary team decision. A health economic analysis identified a 28% reduction in costs. Conclusions The system’s in-built data validation and the automatic generation of the multidisciplinary team outcome letter improved patient safety through a reduction in transcription errors. We are currently developing the next stage of the programme to proactively identify all new adrenal incidentaloma cases

    Enzyme-catalysed polymer cross-linking:Biocatalytic tools for chemical biology, materials science and beyond

    Get PDF
    Intermolecular cross-linking is one of the most important techniques that can be used to fundamentally alter the material properties of a polymer. The introduction of covalent bonds between individual polymer chains creates 3D macromolecular assemblies with enhanced mechanical properties and greater chemical or thermal tolerances. In contrast to many chemical cross-linking reactions, which are the basis of thermoset plastics, enzyme catalysed processes offer a complimentary paradigm for the assembly of cross-linked polymer networks through their predictability and high levels of control. Additionally, enzyme catalysed reactions offer an inherently ‘greener’ and more biocompatible approach to covalent bond formation, which could include the use of aqueous solvents, ambient temperatures, and heavy metal-free reagents. Here, we review recent progress in the development of biocatalytic methods for polymer cross-linking, with a specific focus on the most promising candidate enzyme classes and their underlying catalytic mechanisms. We also provide exemplars of the use of enzyme catalysed cross-linking reactions in industrially relevant applications, noting the limitations of these approaches and outlining strategies to mitigate reported deficiencies

    Baby Pigs Have a Sweet Tooth!

    Get PDF
    Early gains are the cheapest. And you can get faster early gains by feeding a good pig starter. In this article, the others tell how pig starters can be made more palatable and also what should go into a good pig starter
    corecore