20,038 research outputs found

    Flavor Gauge Models Below the Fermi Scale

    Full text link
    The mass and weak interaction eigenstates for the quarks of the third generation are very well aligned, an empirical fact for which the Standard Model offers no explanation. We explore the possibility that this alignment is due to an additional gauge symmetry in the third generation. Specifically, we construct and analyze an explicit, renormalizable model with a gauge boson, XX, corresponding to the B−LB-L symmetry of the third family. Having a relatively light (in the MeV to multi-GeV range), flavor-nonuniversal gauge boson results in a variety of constraints from different sources. By systematically analyzing 20 different constraints, we identify the most sensitive probes: kaon, B+B^+, D+D^+ and Upsilon decays, D−Dˉ0D-\bar{D}^0 mixing, atomic parity violation, and neutrino scattering and oscillations. For the new gauge coupling gXg_X in the range (10−2−10−4)(10^{-2} - 10^{-4}) the model is shown to be consistent with the data. Possible ways of testing the model in bb physics, top and ZZ decays, direct collider production and neutrino oscillation experiments, where one can observe nonstandard matter effects, are outlined. The choice of leptons to carry the new force is ambiguous, resulting in additional phenomenological implications, such as non-universality in semileptonic bottom decays. The proposed framework provides interesting connections between neutrino oscillations, flavor and collider physics.Comment: 44 pages, 7 figures, 3 tables; B physics constraints and references added, conclusions unchange

    Bar formation and evolution in disc galaxies with gas and a triaxial halo: Morphology, bar strength and halo properties

    Full text link
    We follow the formation and evolution of bars in N-body simulations of disc galaxies with gas and/or a triaxial halo. We find that both the relative gas fraction and the halo shape play a major role in the formation and evolution of the bar. In gas-rich simulations, the disc stays near-axisymmetric much longer than in gas-poor ones, and, when the bar starts growing, it does so at a much slower rate. Due to these two effects combined, large-scale bars form much later in gas-rich than in gas-poor discs. This can explain the observation that bars are in place earlier in massive red disc galaxies than in blue spirals. We also find that the morphological characteristics in the bar region are strongly influenced by the gas fraction. In particular, the bar at the end of the simulation is much weaker in gas-rich cases. In no case did we witness bar destruction. Halo triaxiality has a dual influence on bar strength. In the very early stages of the simulation it induces bar formation to start earlier. On the other hand, during the later, secular evolution phase, triaxial haloes lead to considerably less increase of the bar strength than spherical ones. The shape of the halo evolves considerably with time. The inner halo parts may become more elongated, or more spherical, depending on the bar strength. The main body of initially triaxial haloes evolves towards sphericity, but in initially strongly triaxial cases it stops well short of becoming spherical. Part of the angular momentum absorbed by the halo generates considerable rotation of the halo particles that stay located relatively near the disc for long periods of time. Another part generates halo bulk rotation, which, contrary to that of the bar, increases with time but stays small.Comment: 21 pages, 16 figures, accepted for publication in MNRAS. A high resolution version is at http://195.221.212.246:4780/dynam/paper/amr12/rm_3axhalo_gas.pd

    Cerebral and cardiovascular effects of analgesic doses of ketamine during a target controlled general anesthesia: a prospective randomized study

    Get PDF
    Introduction: Ketamine is increasingly being used in various pain settings. The purpose of this study was to assess the effect of an analgesic dose of ketamine in the bispectral index (BIS), spectral edge frequency (SEF-95), density spectral array (DSA), cerebral oximetry (rSO2) and mean arterial pressure (MAP) during general anaesthesia with a target controlled infusion. Methods: A prospective, single-blinded and randomized study on adult patients scheduled for elective spine surgery was carried out. After anaesthesia induction with propofol, remifentanil and rocuronium, when a stable BIS value (45-55) was achieved, an automatic recording of BIS, SEF-95, rSO2 and MAP values during 9 min was performed to establish patients baseline values. Subsequently, patients were randomly assigned to receive a ketamine bolus dose of 0.2 mg/kg, 0.5 mg/kg or 1 mg/kg; all variables were recorded for additional 9 min after the ketamine bolus, in the absence of any surgical stimulus. A p-value <0.05 was considered significant in the statistical analysis. Results and discussion: Thirty-nine patients were enrolled in the study. Our results show a dose-related increase of SEF-95 and BIS values. DSA demonstrate a shift in the frequency range and power distribution towards higher frequencies. Our results do not show significant differences in MAP and rSO2 values. Conclusion: When ketamine is used intraoperatively in analgesic doses, the anaesthetist should anticipate an increase in SEF-95 and BIS values which will not be associated with the level of anaesthesia.info:eu-repo/semantics/publishedVersio

    Audible Axions

    Full text link
    Conventional approaches to probing axions and axion-like particles (ALPs) typically rely on a coupling to photons. However, if this coupling is extremely weak, ALPs become invisible and are effectively decoupled from the Standard Model. Here we show that such invisible axions, which are viable candidates for dark matter, can produce a stochastic gravitational wave background in the early universe. This signal is generated in models where the invisible axion couples to a dark gauge boson that experiences a tachyonic instability when the axion begins to oscillate. Incidentally, the same mechanism also widens the viable parameter space for axion dark matter. Quantum fluctuations amplified by the exponentially growing gauge boson modes source chiral gravitational waves. For axion decay constants f≳1017f \gtrsim 10^{17} GeV, this signal is detectable by either pulsar timing arrays or space/ground-based gravitational wave detectors for a broad range of axion masses, thus providing a new window to probe invisible axion models.Comment: 8 pages, 4 figures. References added, version submitted to JHE
    • …
    corecore