14 research outputs found

    Quantile regression analysis reveals widespread evidence for gene-environment or gene-gene interactions in myopia development

    Get PDF
    A genetic contribution to refractive error has been confirmed by the discovery of more than 150 associated variants in genome-wide association studies (GWAS). Environmental factors such as education and time outdoors also demonstrate strong associations. Currently however, the extent of gene-environment or gene-gene interactions in myopia is unknown. We tested the hypothesis that refractive error-associated variants exhibit effect size heterogeneity, a hallmark feature of genetic interactions. Of 146 variants tested, evidence of non-uniform, non-linear effects were observed for 66 (45%) at Bonferroni-corrected significance (P < 1.1 × 10−4) and 128 (88%) at nominal significance (P < 0.05). LAMA2 variant rs12193446, for example, had an effect size varying from −0.20 diopters (95% CI −0.18 to −0.23) to −0.89 diopters (95% CI −0.71 to −1.07) in different individuals. SNP effects were strongest at the phenotype extremes and weaker in emmetropes. A parsimonious explanation for these findings is that gene-environment or gene-gene interactions in myopia are pervasive

    Automated retinal image quality assessment on the UK Biobank dataset for epidemiological studies.

    Get PDF
    Morphological changes in the retinal vascular network are associated with future risk of many systemic and vascular diseases. However, uncertainty over the presence and nature of some of these associations exists. Analysis of data from large population based studies will help to resolve these uncertainties. The QUARTZ (QUantitative Analysis of Retinal vessel Topology and siZe) retinal image analysis system allows automated processing of large numbers of retinal images. However, an image quality assessment module is needed to achieve full automation. In this paper, we propose such an algorithm, which uses the segmented vessel map to determine the suitability of retinal images for use in the creation of vessel morphometric data suitable for epidemiological studies. This includes an effective 3-dimensional feature set and support vector machine classification. A random subset of 800 retinal images from UK Biobank (a large prospective study of 500,000 middle aged adults; where 68,151 underwent retinal imaging) was used to examine the performance of the image quality algorithm. The algorithm achieved a sensitivity of 95.33% and a specificity of 91.13% for the detection of inadequate images. The strong performance of this image quality algorithm will make rapid automated analysis of vascular morphometry feasible on the entire UK Biobank dataset (and other large retinal datasets), with minimal operator involvement, and at low cost
    corecore