4,703 research outputs found

    Toughening and Mechanical Properties of Epoxy Modified with Block Co-polymers and MWCNTs

    Get PDF
    AbstractThe objective of this work was to systematically develop and understand novel polymeric hybrid nanocomposites that include block copolymers (BCP) with tailored morphologies in order to generate high toughness. Furthermore, rigid fillers in the form of multi-walled carbon nanotubes (MWCNT) were added systematically together with block copolymers to study the combined effect of rigid nanofillers and more ductile BCP particles. The resulting matrix was extensively and carefully characterized by standard methods. This included thorough characterization of mechanical, fracture mechanical and thermal properties. Results show that both fracture toughness, KIc, and critical energy release rate, GIc, were increased linearly to a maximum of 2.10 MPa.m1/2 and 1.46 kJ/m2 respectively by the addition of 12 wt. % BCP. Fractography studies reveal toughening mechanisms of the nanocomposites that were identified as both the cavitation of spherical micelles and enhanced plastic deformation and furthermore fiber pull-out in the case of hybrid nanocomposites

    Modelling chemical abundance distributions for dwarf galaxies in the Local Group: the impact of turbulent metal diffusion

    Get PDF
    We investigate stellar metallicity distribution functions (MDFs), including Fe and α{\alpha}-element abundances, in dwarf galaxies from the Feedback in Realistic Environments (FIRE) project. We examine both isolated dwarf galaxies and those that are satellites of a Milky Way-mass galaxy. In particular, we study the effects of including a sub-grid turbulent model for the diffusion of metals in gas. Simulations that include diffusion have narrower MDFs and abundance ratio distributions, because diffusion drives individual gas and star particles toward the average metallicity. This effect provides significantly better agreement with observed abundance distributions of dwarf galaxies in the Local Group, including the small intrinsic scatter in [α{\alpha}/Fe] vs. [Fe/H] (less than 0.1 dex). This small intrinsic scatter arises in our simulations because the interstellar medium (ISM) in dwarf galaxies is well-mixed at nearly all cosmic times, such that stars that form at a given time have similar abundances to within 0.1 dex. Thus, most of the scatter in abundances at z = 0 arises from redshift evolution and not from instantaneous scatter in the ISM. We find similar MDF widths and intrinsic scatter for satellite and isolated dwarf galaxies, which suggests that environmental effects play a minor role compared with internal chemical evolution in our simulations. Overall, with the inclusion of metal diffusion, our simulations reproduce abundance distribution widths of observed low-mass galaxies, enabling detailed studies of chemical evolution in galaxy formation.Comment: 19 pages, 13 figures, published in MNRA

    Reconciling observed and simulated stellar halo masses

    Get PDF
    We use cosmological hydrodynamical simulations of Milky-Way-mass galaxies from the FIRE project to evaluate various strategies for estimating the mass of a galaxy's stellar halo from deep, integrated-light images. We find good agreement with integrated-light observations if we mimic observational methods to measure the mass of the stellar halo by selecting regions of an image via projected radius relative to the disk scale length or by their surface density in stellar mass . However, these observational methods systematically underestimate the accreted stellar component, defined in our (and most) simulations as the mass of stars formed outside of the host galaxy, by up to a factor of ten, since the accreted component is centrally concentrated and therefore substantially obscured by the galactic disk. Furthermore, these observational methods introduce spurious dependencies of the estimated accreted stellar component on the stellar mass and size of galaxies that can obscure the trends in accreted stellar mass predicted by cosmological simulations, since we find that in our simulations the size and shape of the central galaxy is not strongly correlated with the assembly history of the accreted stellar halo. This effect persists whether galaxies are viewed edge-on or face-on. We show that metallicity or color information may provide a way to more cleanly delineate in observations the regions dominated by accreted stars. Absent additional data, we caution that estimates of the mass of the accreted stellar component from single-band images alone should be taken as lower limits.Comment: Version accepted by Ap

    Simulating galaxies in the reionization era with FIRE-2: morphologies and sizes

    Get PDF
    We study the morphologies and sizes of galaxies at z>5 using high-resolution cosmological zoom-in simulations from the Feedback In Realistic Environments project. The galaxies show a variety of morphologies, from compact to clumpy to irregular. The simulated galaxies have more extended morphologies and larger sizes when measured using rest-frame optical B-band light than rest-frame UV light; sizes measured from stellar mass surface density are even larger. The UV morphologies are usually dominated by several small, bright young stellar clumps that are not always associated with significant stellar mass. The B-band light traces stellar mass better than the UV, but it can also be biased by the bright clumps. At all redshifts, galaxy size correlates with stellar mass/luminosity with large scatter. The half-light radii range from 0.01 to 0.2 arcsec (0.05-1 kpc physical) at fixed magnitude. At z>5, the size of galaxies at fixed stellar mass/luminosity evolves as (1+z)^{-m}, with m~1-2. For galaxies less massive than M_star~10^8 M_sun, the ratio of the half-mass radius to the halo virial radius is ~10% and does not evolve significantly at z=5-10; this ratio is typically 1-5% for more massive galaxies. A galaxy's "observed" size decreases dramatically at shallower surface brightness limits. This effect may account for the extremely small sizes of z>5 galaxies measured in the Hubble Frontier Fields. We provide predictions for the cumulative light distribution as a function of surface brightness for typical galaxies at z=6.Comment: 11 pages, 11 figures, resubmitted to MNRAS after revision for referee's comment

    Formation of Globular Cluster Candidates in Merging Proto-galaxies at High Redshift: A View from the FIRE Cosmological Simulations

    Get PDF
    Using a state-of-the-art cosmological simulation of merging proto-galaxies at high redshift from the FIRE project, with explicit treatments of star formation and stellar feedback in the interstellar medium, we investigate the formation of star clusters and examine one of the formation hypothesis of present-day metal-poor globular clusters. We find that frequent mergers in high-redshift proto-galaxies could provide a fertile environment to produce long-lasting bound star clusters. The violent merger event disturbs the gravitational potential and pushes a large gas mass of ~> 1e5-6 Msun collectively to high density, at which point it rapidly turns into stars before stellar feedback can stop star formation. The high dynamic range of the reported simulation is critical in realizing such dense star-forming clouds with a small dynamical timescale, t_ff <~ 3 Myr, shorter than most stellar feedback timescales. Our simulation then allows us to trace how clusters could become virialized and tightly-bound to survive for up to ~420 Myr till the end of the simulation. Because the cluster's tightly-bound core was formed in one short burst, and the nearby older stars originally grouped with the cluster tend to be preferentially removed, at the end of the simulation the cluster has a small age spread.Comment: 14 pages, 14 figures, Accepted for publication in the Monthly Notices of the Royal Astronomical Society, High-resolution version of this article also available at http://www.jihoonkim.org/index/research.html#g

    The contribution of globular clusters to cosmic reionization

    Full text link
    We study the escape fraction of ionizing photons (f_esc) in two cosmological zoom-in simulations of galaxies in the reionization era with halo mass M_halo~10^10 and 10^11 M_sun (stellar mass M*~10^7 and 10^9 M_sun) at z=5 from the Feedback in Realistic Environments project. These simulations explicitly resolve the formation of proto-globular clusters (GCs) self-consistently, where 17-39% of stars form in bound clusters during starbursts. Using post-processing Monte Carlo radiative transfer calculations of ionizing radiation, we compute f_esc from cluster stars and non-cluster stars formed during a starburst over ~100 Myr in each galaxy. We find that the averaged f_esc over the lifetime of a star particle follows a similar distribution for cluster stars and non-cluster stars. Clusters tend to have low f_esc in the first few Myrs, presumably because they form preferentially in more extreme environments with high optical depths; the f_esc increases later as feedback starts to disrupt the natal cloud. On the other hand, non-cluster stars formed between cluster complexes or in the compressed shell at the front of a superbubble can also have high f_esc. We find that cluster stars on average have comparable f_esc to non-cluster stars. This result is robust across several star formation models in our simulations. Our results suggest that the fraction of ionizing photons from proto-GCs to cosmic reionization is comparable to the cluster formation efficiency in high-redshift galaxies and hence proto-GCs likely contribute an appreciable fraction of photons but are not the dominant sources for reionization.Comment: 10 pages, 7 figures, comments welcome, key results in Table 3 and Figure

    Dark Matter Halo Growth II: Diffuse Accretion and its Environmental Dependence

    Full text link
    Dark matter haloes in Lambda CDM simulations grow by mergers with other haloes as well as accretion of "diffuse" non-halo material. We quantify the mass growth rates via these two processes, dM_mer/dt and dM_dif/dt, and their dependence on halo environment using the ~500,000 haloes in the Millennium simulation. Adopting a local mass density parameter as a measure of halo environment, we find the two rates show strong but opposite environmental dependence, with mergers playing an increasingly important role for halo growths in overdense regions and diffuse accretion dominating growth in voids. This behaviour is independent of the mass cuts used to define haloes vs non-haloes. For galaxy-scale haloes, these two opposite correlations largely cancel out, but a weak environmental dependence remains that results in a slightly lower mean total growth rate, and hence an earlier mean formation redshift, for haloes in denser regions. The mean formation redshift of the ~5000 cluster-mass haloes, on the other hand, appears to have no correlation with halo environment. The origin of the positive correlation of dM_mer/dt with local density can be traced to the surrounding mass reservoir outside the haloes, where more progenitor haloes are available in denser regions. The negative correlation of dM_dif/dt with density, however, is not explained by the available diffuse mass in the reservoir, which is in fact larger in denser regions. The non-halo component may therefore be partially comprised of truly diffuse dark matter particles that are dynamically hotter and are accreted at a suppressed rate in denser regions. We also discuss the implications of these results for how to modify the Extended Press-Schechter model of halo growth, which in its original form does not predict environmental dependence.Comment: 15 pages, 9 figures, accepted in MNRA

    3D gas-phase elemental abundances across the formation histories of Milky Way-mass galaxies in the FIRE simulations: initial conditions for chemical tagging

    Full text link
    We use FIRE-2 simulations to examine 3D variations of gas-phase elemental abundances of [O/H], [Fe/H], and [N/H] in 11 MW and M31-mass galaxies across their formation histories at z ≤ 1.5 (⁠tlookback≤9.4Gyr⁠), motivated by characterizing the initial conditions of stars for chemical tagging. Gas within 1kpc of the disc mid-plane is vertically homogeneous to ≲0.008dex at all z ≤ 1.5. We find negative radial gradients (metallicity decreases with galactocentric radius) at all times, which steepen over time from ≈−0.01dexkpc−1 at z = 1 (⁠tlookback=7.8Gyr⁠) to ≈−0.03dexkpc−1 at z = 0, and which broadly agree with observations of the MW, M31, and nearby MW/M31-mass galaxies. Azimuthal variations at fixed radius are typically 0.14dex at z = 1, reducing to 0.05dex at z = 0. Thus, over time radial gradients become steeper while azimuthal variations become weaker (more homogeneous). As a result, azimuthal variations were larger than radial variations at z ≳ 0.8 (⁠tlookback≳6.9Gyr⁠). Furthermore, elemental abundances are measurably homogeneous (to ≲0.05 dex) across a radial range of ΔR≈3.5kpc at z ≳ 1 and ΔR≈1.7kpc at z = 0. We also measure full distributions of elemental abundances, finding typically negatively skewed normal distributions at z ≳ 1 that evolve to typically Gaussian distributions by z = 0. Our results on gas abundances inform the initial conditions for stars, including the spatial and temporal scales for applying chemical tagging to understand stellar birth in the MW

    Oligomerization of amyloid Abeta peptides using hydrogen bonds and hydrophobicity forces

    Get PDF
    The 16-22 amino acid fragment of the beta-amyloid peptide associated with the Alzheimer's disease, Abeta, is capable of forming amyloid fibrils. Here we study the aggregation mechanism of Abeta(16-22) peptides by unbiased thermodynamic simulations at the atomic level for systems of one, three and six Abeta(16-22) peptides. We find that the isolated Abeta(16-22) peptide is mainly a random coil in the sense that both the alpha-helix and beta-strand contents are low, whereas the three- and six-chain systems form aggregated structures with a high beta-sheet content. Furthermore, in agreement with experiments on Abeta(16-22) fibrils, we find that large parallel beta-sheets are unlikely to form. For the six-chain system, the aggregated structures can have many different shapes, but certain particularly stable shapes can be identified.Comment: 19 pages, 7 figures (to appear in Biophys. J.

    The Merger Rates and Mass Assembly Histories of Dark Matter Haloes in the Two Millennium Simulations

    Full text link
    We construct merger trees of dark matter haloes and quantify their merger rates and mass growth rates using the joint dataset from the Millennium and Millennium-II simulations. The finer resolution of the Millennium-II Simulation has allowed us to extend our earlier analysis of halo merger statistics to an unprecedentedly wide range of descendant halo mass (10^10 < M0 < 10^15 Msun), progenitor mass ratio (10^-5 < xi < 1), and redshift (0 < z < 15). We update our earlier fitting form for the mean merger rate per halo as a function of M_0, xi, and z. The overall behavior of this quantity is unchanged: the rate per unit redshift is nearly independent of z out to z~15; the dependence on halo mass is weak (M0^0.13); and it is nearly a power law in the progenitor mass ratio (xi^-2). We also present a simple and accurate fitting formula for the mean mass growth rate of haloes as a function of mass and redshift. This mean rate is 46 Msun/yr for 10^12 Msun haloes at z=0, and it increases with mass as M^{1.1} and with redshift as (1+z)^2.5 (for z > 1). When the fit for the mean mass growth rate is integrated over a halo's history, we find excellent match to the mean mass assembly histories of the simulated haloes. By combining merger rates and mass assembly histories, we present results for the number of mergers over a halo's history and the statistics of the redshift of the last major merger.Comment: 12 pages, 9 figures, accepted in MNRA
    corecore