140 research outputs found

    PEGylated graphene oxide for tumor-targeted delivery of paclitaxel.

    Get PDF
    AIM: The graphene oxide (GO) sheet has been considered one of the most promising carbon derivatives in the field of material science for the past few years and has shown excellent tumor-targeting ability, biocompatibility and low toxicity. We have endeavored to conjugate paclitaxel (PTX) to GO molecule and investigate its anticancer efficacy. MATERIALS & METHODS: We conjugated the anticancer drug PTX to aminated PEG chains on GO sheets through covalent bonds to get GO-PEG-PTX complexes. The tissue distribution and anticancer efficacy of GO-PEG-PTX were then investigated using a B16 melanoma cancer-bearing C57 mice model. RESULTS: The GO-PEG-PTX complexes exhibited excellent water solubility and biocompatibility. Compared with the traditional formulation of PTX (Taxol®), GO-PEG-PTX has shown prolonged blood circulation time as well as high tumor-targeting and -suppressing efficacy. CONCLUSION: PEGylated graphene oxide is an excellent nanocarrier for paclitaxel for cancer targeting

    Exploring copyrolysis characteristics and thermokinetics of peach stone and bituminous coal blends

    Get PDF
    Copyrolysis, being an active area of research due to its synergistic impact in utilizing diverse fuel resources, including waste materials, like, peach stone (PS), has been the focal point for this study. PS, produced in vast quantities annually and typically intended for landscaping or insulation purposes, is being studied in combination with low‐grade bituminous coal for energy utilization focusing on thermokinetics and synergistic aspects. Coal‐peach stone (C‐PS) blends were formulated at different ratios and subjected to comprehensive characterization techniques, including ultimate analysis (CHN‐S), gross calorific value (GCV), Fourier transform infrared spectroscopy, and thermogravimetric analyzer (TGA). The ultimate analysis revealed an enhancement in carbon and hydrogen content from 45.38% to 68.08% and from 3.89% to 6.96%, respectively. Additionally, a reduction in sulfur and nitrogen content from 0.54% to 0.11% and from 1.16% to 0.42%, respectively, was observed with an increase in the ratio of PS in the C‐PS blends. The GCV of C‐PS blends ranged from 20.75 to 26.01 MJ kg−1. The pyrolysis conditions simulated in TGA are pivotal for evaluating thermokinetics and synergistic effects. The 60C:40PS blend shows a positive synergy index (SI) value of 0.0203% concerning total mass loss (MLT) indicating a favorable condition for bio‐oil generation. Coats–Redfern model‐fitting method reveals that the activation energy (Ea) of C‐PS blends increases in Section II with the addition of PS, and conversely, it decreases in Section III. The Ea for 100PS and 100C was 106.76 and 45.85 kJ mol−1 through (D3) and (F1), respectively, which was improved through the optimal blend 60C:40PS with an Ea of 94.56 and 27.58 kJ mol−1 through (D3) and (F2), respectively. The values obtained from linear regression prove that the kinetic models are effective while the thermodynamic analysis indicates that the pyrolytic behavior of C‐PS blends is characterized as endothermic, nonspontaneous, and capable of achieving thermodynamic equilibrium more rapidly

    Low Resistance Polycrystalline Diamond Thin Films Deposited by Hot Filament Chemical Vapour Deposition

    Get PDF
    Polycrystalline diamond thin films with outgrowing diamond (OGD) grains were deposited onto silicon wafers using a hydrocarbon gas (CH4) highly diluted with H2 at low pressure in a hot filament chemical vapour deposition (HFCVD) reactor with a range of gas flow rates. X-ray diffraction (XRD) and SEM showed polycrystalline diamond structure with a random orientation. Polycrystalline diamond films with various textures were grown and (111) facets were dominant with sharp grain boundaries. Outgrowth was observed in flowerish character at high gas flow rates. Isolated single crystals with little openings appeared at various stages at low gas flow rates. Thus, changing gas flow rates had a beneficial influence on the grain size, growth rate and electrical resistivity. CVD diamond films gave an excellent performance for medium film thickness with relatively low electrical resistivity and making them potentially useful in many industrial applications

    RRx-001 followed by platinum plus etoposide in patients with previously treated small-cell lung cancer

    Get PDF
    BACKGROUND: This exploratory single-arm phase II study evaluated the efficacy and safety of RRx-001 followed by reintroduction of platinum plus etoposide in patients with previously treated small-cell lung cancer (SCLC). METHODS: Patients were treated with RRx-001 4 mg IV on day 1 of each week of a 21-day cycle followed at progression by re-challenge with etoposide 80-100 IV mg/m RESULTS: Twenty-six patients were enroled and received at least one dose of RRx-001. The median number of prior lines of therapy was 2 (range 1-9) and 19 (73.1%) patients had platinum-resistant disease. In the intention-to-treat population, one patient (3.8%) had complete response and six (23.1%) had partial response on platinum plus etoposide. The estimated median and 12-month OS from enrolment were 8.6 months and 44.1%, respectively. The most common treatment-emergent adverse event from RRx-001 was mild discomfort at the infusion site (23%). CONCLUSIONS: RRx-001 followed by re-challenge with platinum plus etoposide chemotherapy is feasible and associated with promising results. CLINICAL TRIAL REGISTRATION: NCT02489903

    Raman spectroscopy in head and neck cancer

    Get PDF
    In recent years there has been much interest in the use of optical diagnostics in cancer detection. Early diagnosis of cancer affords early intervention and greatest chance of cure. Raman spectroscopy is based on the interaction of photons with the target material producing a highly detailed biochemical 'fingerprint' of the sample. It can be appreciated that such a sensitive biochemical detection system could confer diagnostic benefit in a clinical setting. Raman has been used successfully in key health areas such as cardiovascular diseases, and dental care but there is a paucity of literature on Raman spectroscopy in Head and Neck cancer. Following the introduction of health care targets for cancer, and with an ever-aging population the need for rapid cancer detection has never been greater. Raman spectroscopy could confer great patient benefit with early, rapid and accurate diagnosis. This technique is almost labour free without the need for sample preparation. It could reduce the need for whole pathological specimen examination, in theatre it could help to determine margin status, and finally peripheral blood diagnosis may be an achievable target

    How do high glycemic load diets influence coronary heart disease?

    Get PDF
    corecore