19 research outputs found

    Efficacy of a combination of imidacloprid 10%/moxidectin 2.5% spot-on (Advocate® for dogs) in the prevention of canine spirocercosis (Spirocerca lupi)

    Get PDF
    The nematode Spirocerca lupi is a major canine parasite in warm regions of the world, classically causing parasitic nodules in the esophagus, aortic aneurysms, and spondylitis. This study evaluated the preventive efficacy of monthly treatment with imidacloprid 10%/moxidectin 2.5% spot-on (Advocate® for dogs) administered over a period of 9 months in young dogs naturally exposed to S. lupi on Réunion island. One hundred and twelve puppies, aged from 2.0 to 4.0 months and with a negative spirocerca fecal examination at inclusion, completed the study. They were randomly allocated to two groups. Group A puppies (n = 58) received nine spot-on treatments with Advocate® at the minimum dose of 2.5 mg moxidectin/kg bw at monthly intervals. Control group B puppies (n = 54) received no treatment for S. lupi. During the study, regular clinical and fecal examinations were performed, as was final upper gastrointestinal endoscopy. Endoscopy showed that 19 dogs from group B had spirocerca nodules, corresponding to a prevalence of 35.2% in dogs aged 12 to 14 months. In contrast, only one dog from group A had a nodule, corresponding to a preventive efficacy of 94.7% (p < 0.0001). None of the 378 fecal examinations were positive for spirocerca. This study confirms a high prevalence of canine spirocercosis on Réunion and shows that infestation occurs in very young puppies. Furthermore, it demonstrates that monthly spot-on administration of a combination of imidacloprid 10%/moxidectin 2.5% (Advocate® for dogs) in puppies starting at the age of 2 to 4 months achieves effective and safe prevention of canine spirocercosis

    Scale-down effect on the extracellular proteome of Escherichia coli: correlation with membrane permeability and modulation according substrate heterogeneities

    Full text link
    Protein leakage is induced in well-mixed fed-batch bioreactor by comparison with cultures carried out in scale-down conditions. This effect is attributed to a progressive increase of cell membrane permeability and the synthesis of several outer-membrane components allowing to cope with substrate limitation commonly found in high-cell density culture. A comparative analysis of protein leakage has thus been performed in well-mixed bioreactors and in scale-down devices. The extracellular proteome of E.coli has been investigated by 2D-gel electrophoresis and identified by subsequent MALDI-TOF analysis. On 110 picked spots, 67 proteins have been identified and the sub-localisation and the molecular function of these proteins have been determined. A majority of the extracellular proteome was composed of outer-membrane and periplasmic proteins (64%) confirming the fact that leakage is involved in high-cell density cultures. About 50% of this extracellular proteome was composed of transport and binding proteins. Furthermore, the more abundant spots on the gel corresponded to porin proteins and periplasmic transporters. In particular, the OmpC porin was found to be very abundant. Moreover, the scale-down effect on this extracellular proteome has been investigated by 2D-DIGE analysis (2-Dimensional Differential in-Gel Electrophoresis) and significant differences have been observed by comparison with culture carried out in well-mixed systems. Indeed, since substrate limitation signal is alleviated in this kind of apparatus, cell permeability was lowered as shown by flow cytometry. In scale-down conditions, protein leakage was thus less abundant
    corecore