41 research outputs found

    Stem cell differentiation increases membrane-actin adhesion regulating cell blebability, migration and mechanics

    Get PDF
    This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder in order to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/K. S. is funded by an EPSRC PhD studentship. S.T. is funded by an EU Marie Curie Intra European Fellowship (GENOMICDIFF)

    Diffusion and retention are major determinants of protein targeting to the inner nuclear membrane

    Get PDF
    Newly synthesized membrane proteins are constantly sorted from the endoplasmic reticulum (ER) to various membranous compartments. How proteins specifically enrich at the inner nuclear membrane (INM) is not well understood. We have established a visual in vitro assay to measure kinetics and investigate requirements of protein targeting to the INM. Using human LBR, SUN2, and LAP2 beta as model substrates, we show that INM targeting is energy-dependent but distinct from import of soluble cargo. Accumulation of proteins at the INM relies on both a highly interconnected ER network, which is affected by energy depletion, and an efficient immobilization step at the INM. Nucleoporin depletions suggest that translocation through nuclear pore complexes (NPCs) is rate-limiting and restricted by the central NPC scaffold. Our experimental data combined with mathematical modeling support a diffusion-retention-based mechanism of INM targeting. We experimentally confirmed the sufficiency of diffusion and retention using an artificial reporter lacking natural sorting signals that recapitulates the energy dependence of the process in vivo

    Metformin use and cardiovascular outcomes after acute myocardial infarction in patients with type 2 diabetes: a cohort study

    Get PDF
    Background: The use of metformin after acute myocardial infarction (AMI) has been associated with reduced mortality in people with type 2 diabetes mellitus (T2DM). However, it is not known if it is acutely cardioprotective in patients taking metformin at the time of AMI. We compared patient outcomes according to metformin status at the time of admission for fatal and non-fatal AMI in a large cohort of patients in England. Methods: This study used linked data from primary care, hospital admissions and death registry from 4.7 million inhabitants in England, as part of the CALIBER resource. The primary endpoint was a composite of acute myocardial infarction requiring hospitalisation, stroke and cardiovascular death. The secondary endpoints were heart failure (HF) hospitalisation and all-cause mortality. Results: 4,030 patients with T2DM and incident AMI recorded between January 1998 and October 2010 were included. At AMI admission, 63.9% of patients were receiving metformin and 36.1% another oral hypoglycaemic drug. Median follow-up was 343 (IQR: 1–1436) days. Adjusted analyses showed an increased hazard of the composite endpoint in metformin users compared to non-users (HR 1.09 [1.01–1.19]), but not of the secondary endpoints. The higher risk of the composite endpoint in metformin users was only observed in people taking metformin at AMI admission, whereas metformin use post-AMI was associated with a reduction in risk of all-cause mortality (0.76 [0.62–0.93], P = 0.009). Conclusions: Our study suggests that metformin use at the time of first AMI is associated with increased risk of cardiovascular disease and death in patients with T2DM, while its use post-AMI might be beneficial. Further investigation in well-designed randomised controlled trials is indicated, especially in view of emerging evidence of cardioprotection from sodium-glucose co-transporter-2 (SGLT2) inhibitors
    corecore