703 research outputs found
Evidence of novel finescale structural variation at autism spectrum disorder candidate loci
Background: Autism spectrum disorders (ASD) represent a group of neurodevelopmental disorders characterized by a core set of social-communicative and behavioral impairments. Gamma-aminobutyric acid (GABA) is the major inhibitory neurotransmitter in the brain, acting primarily via the GABA receptors (GABR). Multiple lines of evidence, including altered GABA and GABA receptor expression in autistic patients, indicate that the GABAergic system may be involved in the etiology of autism.
Methods: As copy number variations (CNVs), particularly rare and de novo CNVs, have now been implicated in ASD risk, we examined the GABA receptors and genes in related pathways for structural variation that may be associated with autism. We further extended our candidate gene set to include 19 genes and regions that had either been directly implicated in the autism literature or were directly related (via function or ancestry) to these primary candidates. For the high resolution CNV screen we employed custom-designed 244 k comparative genomic hybridization (CGH) arrays. Collectively, our probes spanned a total of 11 Mb of GABA-related and additional candidate regions with a density of approximately one probe every 200 nucleotides, allowing a theoretical resolution for detection of CNVs of approximately 1 kb or greater on average. One hundred and sixty-eight autism cases and 149 control individuals were screened for structural variants. Prioritized CNV events were confirmed using quantitative PCR, and confirmed loci were evaluated on an additional set of 170 cases and 170 control individuals that were not included in the original discovery set. Loci that remained interesting were subsequently screened via quantitative PCR on an additional set of 755 cases and 1,809 unaffected family members.
Results: Results include rare deletions in autistic individuals at JAKMIP1, NRXN1, Neuroligin4Y, OXTR, and ABAT. Common insertion/deletion polymorphisms were detected at several loci, including GABBR2 and NRXN3. Overall, statistically significant enrichment in affected vs. unaffected individuals was observed for NRXN1 deletions.
Conclusions: These results provide additional support for the role of rare structural variation in ASD
Inheritance of deleterious mutations at both BRCA1 and BRCA2 in an international sample of 32,295 women
Background: Most or mutation carriers have inherited a single (heterozygous) mutation. Transheterozygotes (TH) who have inherited deleterious mutations in both and are rare, and the consequences of transheterozygosity are poorly understood.
Methods: From 32,295 female mutation carriers, we identified 93 TH (0.3 %). "Cases" were defined as TH, and "controls" were single mutations at (SH1) or (SH2). Matched SH1 "controls" carried a BRCA1 mutation found in the TH "case". Matched SH2 "controls" carried a BRCA2 mutation found in the TH "case". After matching the TH carriers with SH1 or SH2, 91 TH were matched to 9316 SH1, and 89 TH were matched to 3370 SH2.
Results: The majority of TH (45.2 %) involved the three common Jewish mutations. TH were more likely than SH1 and SH2 women to have been ever diagnosed with breast cancer (BC; = 0.002). TH were more likely to be diagnosed with ovarian cancer (OC) than SH2 ( = 0.017), but not SH1. Age at BC diagnosis was the same in TH vs. SH1 ( = 0.231), but was on average 4.5 years younger in TH than in SH2 ( < 0.001). BC in TH was more likely to be estrogen receptor (ER) positive ( = 0.010) or progesterone receptor (PR) positive ( = 0.013) than in SH1, but less likely to be ER positive ( < 0.001) or PR positive ( = 0.012) than SH2. Among 15 tumors from TH patients, there was no clear pattern of loss of heterozygosity (LOH) for or in either BC or OC.
Conclusions: Our observations suggest that clinical TH phenotypes resemble SH1. However, TH breast tumor marker characteristics are phenotypically intermediate to SH1 and SH2.ACA and the CIMBA data management are funded by Cancer Research UK (C12292/A20861 and C12292/A11174). TRR was supported by R01-CA083855, R01-CA102776, and P50-CA083638. KLN, TMF, and SMD are supported by the Basser Research Center at the University of Pennsylvania. BP is supported by R01-CA112520. Cancer Research UK provided financial support for this work. ACA is a Senior Cancer Research UK Cancer Research Fellow. DFE is Cancer Research UK Principal Research Fellow. Tumor analysis was funded by STOP CANCER (to SJR). Study-specific acknowledgements are as provided in the manuscript
Single-cell analysis tools for drug discovery and development
The genetic, functional or compositional heterogeneity of healthy and diseased tissues presents major challenges in drug discovery and development. Such heterogeneity hinders the design of accurate disease models and can confound the interpretation of biomarker levels and of patient responses to specific therapies. The complex nature of virtually all tissues has motivated the development of tools for single-cell genomic, transcriptomic and multiplex proteomic analyses. Here, we review these tools and assess their advantages and limitations. Emerging applications of single cell analysis tools in drug discovery and development, particularly in the field of oncology, are discussed
Multidrug-Resistant Tuberculosis Treatment Outcomes in Karakalpakstan, Uzbekistan: Treatment Complexity and XDR-TB among Treatment Failures
BACKGROUND: A pilot programme to treat multidrug-resistant TB (MDR-TB) was implemented in Karakalpakstan, Uzbekistan in 2003. This region has particularly high levels of MDR-TB, with 13% and 40% among new and previously treated cases, respectively. METHODOLOGY: This study describes the treatment process and outcomes for the first cohort of patients enrolled in the programme, between October 2003 and January 2005. Confirmed MDR-TB cases were treated with an individualised, second-line drug regimen based on drug susceptibility test results, while suspected MDR-TB cases were treated with a standardised regimen pending susceptibility results. PRINCIPAL FINDINGS: Of 108 MDR-TB patients, 87 were started on treatment during the study period. Of these, 33 (38%) were infected with strains resistant to at least one second-line drug at baseline, but none had initial ofloxacin resistance. Treatment was successful for 54 (62%) patients, with 13 (15%) dying during treatment, 12 (14%) defaulting and 8 (8%) failing treatment. Poor clinical condition and baseline second-line resistance contributed to treatment failure or death. Treatment regimens were changed in 71 (82%) patients due to severe adverse events or drug resistance. Adverse events were most commonly attributed to cycloserine, ethionamide and p-aminosalicylic acid. Extensively drug resistant TB (XDR-TB) was found among 4 of the 6 patients who failed treatment and were still alive in November 2006. CONCLUSIONS: While acceptable treatment success was achieved, the complexity of treatment and the development of XDR-TB among treatment failures are important issues to be addressed when considering scaling up MDR-TB treatment
Calculating Evolutionary Dynamics in Structured Populations
Evolution is shaping the world around us. At the core of every evolutionary process is a population of reproducing individuals. The outcome of an evolutionary process depends on population structure. Here we provide a general formula for calculating evolutionary dynamics in a wide class of structured populations. This class includes the recently introduced “games in phenotype space” and “evolutionary set theory.” There can be local interactions for determining the relative fitness of individuals, but we require global updating, which means all individuals compete uniformly for reproduction. We study the competition of two strategies in the context of an evolutionary game and determine which strategy is favored in the limit of weak selection. We derive an intuitive formula for the structure coefficient, σ, and provide a method for efficient numerical calculation
Somatic mutation and gain of copy number of PIK3CA in human breast cancer
INTRODUCTION: Phosphatidylinositol 3-kinases (PI3Ks) are a group of lipid kinases that regulate signaling pathways involved in cell proliferation, adhesion, survival, and motility. Even though PIK3CA amplification and somatic mutation have been reported previously in various kinds of human cancers, the genetic change in PIK3CA in human breast cancer has not been clearly identified. METHODS: Fifteen breast cancer cell lines and 92 primary breast tumors (33 with matched normal tissue) were used to check somatic mutation and gene copy number of PIK3CA. For the somatic mutation study, we specifically checked exons 1, 9, and 20, which have been reported to be hot spots in colon cancer. For the analysis of the gene copy number, we used quantitative real-time PCR and fluorescence in situ hybridization. We also treated several breast cancer cells with the PIK3CA inhibitor LY294002 and compared the apoptosis status in cells with and without PIK3CA mutation. RESULTS: We identified a 20.6% (19 of 92) and 33.3% (5 of 15) PIK3CA somatic mutation frequency in primary breast tumors and cell lines, respectively. We also found that 8.7% (8 of 92) of the tumors harbored a gain of PIK3CA gene copy number. Only four cases in this study contained both an increase in the gene copy number and a somatic mutation. In addition, mutation of PIK3CA correlated with the status of Akt phosphorylation in some breast cancer cells and inhibition of PIK3CA-induced increased apoptosis in breast cancer cells with PIK3CA mutation. CONCLUSION: Somatic mutation rather than a gain of gene copy number of PIK3CA is the frequent genetic alteration that contributes to human breast cancer progression. The frequent and clustered mutations within PIK3CA make it an attractive molecular marker for early detection and a promising therapeutic target in breast cancer
Is overexpression of HER-2 a predictor of prognosis in colorectal cancer?
<p>Abstract</p> <p>Background</p> <p>The development of novel chemotherapeutic agents in colorectal cancer has improved survival. Following initial response to chemotherapeutic strategies many patients develop refractory disease. This poses a significant challenge common to many cancer subtypes. Newer agents such as Bevacizumab have successfully targeted the tyrosine kinase receptor epidermal growth factor receptor in metastatic colorectal cancer. Human epidermal growth factor receptor-2 is another member of the tyrosine kinase receptor family which has been successfully targeted in breast cancer. This may play a role in colorectal cancer. We conducted a clinicopathological study to determine if overexpression of human epidermal growth factor receptor-2 is a predictor of outcome in a cohort of patients with colorectal cancer.</p> <p>Methods</p> <p>Clinicopathological data and paraffin-embedded specimens were collected on 132 consecutive patients who underwent colorectal resections over a 24-month period at Mayo General Hospital. Twenty-six contained non-malignant disease. Her-2/neu protein overexpression was detected using immunohistochemistry (IHC). The HER-2 4B5 Ventana monoclonal antibody was used. Fluorescent insitu hybridisation (FISH) was performed using INFORM HER-2/Neu Plus. Results were correlated with established clinical and pathological predictors of outcome including TNM stage. Statistical analysis was performed using SPSS version 11.5.</p> <p>Results</p> <p>114 were HER-2/Neu negative using IHC, 7 showed barely perceptible positivity (1+), 9 showed moderate staining (2+) and 2 were strongly positive (3+). There was no correlation with gender, age, grade, Dukes' stage, TNM stage, time to recurrence and 5-year survival (p > 0.05). FISH was applied to all 2+ and 3+ cases as well as some negative cases selected at random. Three were amplified (2 were 3+ and 1 was 2+). Similarly, HER-2 gene overexpression did not correlate with established prognostic indicators.</p> <p>Conclusion</p> <p>HER-2 protein is over expressed in 11% of colorectal cancer patients. The gene encoding HER-2 is amplified in 3% of cases. Overexpression of HER-2 is not a predictor of outcome. However, patients who over express HER-2 may respond to Herceptin therapy.</p
JKA97, a Novel Benzylidene Analog of Harmine, Exerts Anti-Cancer Effects by Inducing G1 Arrest, Apoptosis, and p53-Independent Up-Regulation of p21
JKA97, a benzylidene analog of harmine, has been found to be a promising drug candidate for human cancer therapy, although the underlying molecular mechanisms have not been fully demonstrated. In this study, we evaluated the effects of JKA97 on human breast cancer cells in vitro and in vivo. JKA97 inhibited the growth and proliferation of MCF7 (p53 wild-type), MCF7 (p53 knockdown), and MDA-MB-468 (p53 mutant) cells in a dose-dependent manner. Treatment with JKA97 arrested breast cancer cells in G1 phase and induced apoptosis. JKA97 also significantly suppressed the growth of MCF7 and MDA-MB-468 xenograft tumors. It regulated the expression levels of G1 phase regulators, such as p21, p27, cyclinE, and cylinD1. JKA97 activated p21 transcription, independent of p53, but had little effect on p21 protein stability/degradation. In summary, our results suggest that JKA97 inhibits human breast cancer cell growth through activating p21, independent of p53, which provides a basis for developing this compound as a novel drug for human breast cancer therapy
Microtubules Regulate Local Ca2+ Spiking in Secretory Epithelial Cells
The role of the cytoskeleton in regulating Ca2+ release has been explored in epithelial cells. Trains of local Ca2+ spikes were elicited in pancreatic acinar cells by infusion of inositol trisphosphate through a whole cell patch pipette, and the Ca2+-dependent Cl- current spikes were recorded. The spikes were only transiently inhibited by cytochalasin B, an agent that acts on microfilaments. In contrast, nocodazole (5-100 µM), an agent that disrupts the microtubular network, dose-dependently reduced spike frequency and decreased spike amplitude leading to total blockade of the response. Consistent with an effect of microtubular disruption, colchicine also inhibited spiking but neither Me2SO nor beta -lumicolchicine, an inactive analogue of colchicine, had any effect. The microtubule-stabilizing agent, taxol, also inhibited spiking. The nocodazole effects were not due to complete loss of function of the Ca2+ signaling apparatus, because supramaximal carbachol concentrations were still able to mobilize a Ca2+ response. Finally, as visualized by 2-photon excitation microscopy of ER-Tracker, nocodazole promoted a loss of the endoplasmic reticulum in the secretory pole region. We conclude that microtubules specifically maintain localized Ca2+ spikes at least in part because of the local positioning of the endoplasmic reticulum
- …
