15,735 research outputs found

    Lagrange Anchor for Bargmann-Wigner equations

    Full text link
    A Poincare invariant Lagrange anchor is found for the non-Lagrangian relativistic wave equations of Bargmann and Wigner describing free massless fields of spin s > 1/2 in four-dimensional Minkowski space. By making use of this Lagrange anchor, we assign a symmetry to each conservation law.Comment: A contribution to Proceedings of the XXXI Workshop on the Geometric Methods in Physic

    Genetic variants in ALDH1B1 and alcohol dependence risk in a British and Irish population: A bioinformatic and genetic study

    Get PDF
    Alcohol is metabolized in the liver via the enzymes alcohol dehydrogenase (ADH) and aldehyde dehydrogenase (ALDH). Polymorphisms in the genes encoding these enzymes, which are common in East Asian populations, can alter enzyme kinetics and hence the risk of alcohol dependence and its sequelae. One of the most important genetic variants, in this regards, is the single nucleotide polymorphism (SNP) rs671 in ALDH2, the gene encoding the primary acetaldehyde metabolizing enzyme ALDH2. However, the protective allele of rs671 is absent in most Europeans although ALDH1B1, which shares significant sequence homology with ALDH2, contains several, potentially functional, missense SNPs that do occur in European populations. The aims of this study were: (i) to use bioinformatic techniques to characterize the possible effects of selected variants in ALDH1B1 on protein structure and function; and, (ii) to genotype three missense and one stop-gain, protein-altering, non-synonymous SNPs in 1478 alcohol dependent cases and 1254 controls of matched British and Irish ancestry. No significant allelic associations were observed between the three missense SNPs and alcohol dependence risk. The minor allele frequency of rs142427338 (Gln378Ter) was higher in alcohol dependent cases than in controls (allelic P = 0.19, OR = 2.98, [0.62-14.37]) but as this SNP is very rare the study was likely underpowered to detect an association with alcohol dependence risk. This potential association will needs to be further evaluated in other large, independent European populations

    Assessing Fecal Contamination in Groundwater from the Tulum Region, Quintana Roo, Mexico

    Get PDF
    The Yucatan Peninsula’s groundwater is experiencing increases in degradation due to swelling population and tourism; yet little is known about sources and transport of contaminants in drinking water supplies. The karst allows for rapid transport of microbial and chemical contaminants to the subsurface, resulting in significantly increased potential for pollution of groundwater. The objective of this research is to determine the occurrence, source, and extent of fecal con- tamination in the Tulum region of the Peninsula. A multi-analytical approach was undertaken in impacted and unim- pacted groundwater locations; measurements included physicochemical parameters, total coliform and E. coli, Bacter- oides (human vs total) and caffeine. The results indicate a variation in geochemistry from impacted to protected sites. The total coliform and E. coli show fecal contamination is wide spread. However, the presence of human Bacteriodes and caffeine in the water in the Tulum well field indicates that the recent human activities next to the well field are im- pacting the drinking water supply. This project is an assessment of the area’s current water quality conditions and the probable impact that the aforementioned growth would have on the area’s water supply. By applying multiple source parameter measurements, including molecular microbiology and chemical indicators it was confirmed the extent of fe- cal contamination of human origin covered the entire sampling region.Funding for this research was provided by Northern Illinois University’s Center for Latino and Latin American Studies, the Geology and Environmental Geosciences de- partment, and Library. This work was also funded by the United States Department of Agriculture, Agricultural Re- search Service, Water Management Conservation and Re- search Program. This article is made openly accessible in part by an award from the Northern Illinois University Libraries’ Open Access Publishing Fund

    Interaction of CO2 laser-modified nylon with osteoblast cells in relation to wettability

    Get PDF
    It has been amply demonstrated previously that CO2 lasers hold the ability to surface modify various polymers. In addition, it has been observed that these surface enhancements can augment the biomimetic nature of the laser irradiated materials. This research has employed a CO2 laser marker to produce trench and hatch topographical patterns with peak heights of around 1 μm on the surface of nylon 6,6. The patterns generated have been analysed using white light interferometery, optical microscopy and X-ray photoelectron spectroscopy was employed to determine the surface oxygen content. Contact angle measurements were used to characterize each sample in terms of wettability. Generally, it was seen that as a result of laser processing the contact angle, surface roughness and surface oxygen content increased whilst the apparent polar and total surface energies decreased. The increase in contact angle and reduction in surface energy components was found to be on account of a mixed intermediate state wetting regime owing to the change in roughness due to the induced topographical patterns. To determine the biomimetic nature of the modified and as-received control samples each one was seeded with 2×104 cells/ml normal human osteoblast cells and observed after periods of 24 hours and 4 days using optical microscopy and SEM to determine mean cell cover densities and variations in cell morphology. In addition a haeymocytometer was used to show that the cell count for the laser patterned samples had increased by up to a factor of 1.5 compared to the as-received control sample after 4 days of incubation. Significantly, it was determined that all laser-induced patterns gave rise to better cell response in comparison to the as-received control sample studied due to increased preferential cell growth on those surfaces with increased surface roughness

    Finding polynomial loop invariants for probabilistic programs

    Full text link
    Quantitative loop invariants are an essential element in the verification of probabilistic programs. Recently, multivariate Lagrange interpolation has been applied to synthesizing polynomial invariants. In this paper, we propose an alternative approach. First, we fix a polynomial template as a candidate of a loop invariant. Using Stengle's Positivstellensatz and a transformation to a sum-of-squares problem, we find sufficient conditions on the coefficients. Then, we solve a semidefinite programming feasibility problem to synthesize the loop invariants. If the semidefinite program is unfeasible, we backtrack after increasing the degree of the template. Our approach is semi-complete in the sense that it will always lead us to a feasible solution if one exists and numerical errors are small. Experimental results show the efficiency of our approach.Comment: accompanies an ATVA 2017 submissio

    Independent Eigenstates of Angular Momentum in a Quantum N-body System

    Get PDF
    The global rotational degrees of freedom in the Schr\"{o}dinger equation for an NN-body system are completely separated from the internal ones. After removing the motion of center of mass, we find a complete set of (2+1)(2\ell+1) independent base functions with the angular momentum \ell. These are homogeneous polynomials in the components of the coordinate vectors and the solutions of the Laplace equation, where the Euler angles do not appear explicitly. Any function with given angular momentum and given parity in the system can be expanded with respect to the base functions, where the coefficients are the functions of the internal variables. With the right choice of the base functions and the internal variables, we explicitly establish the equations for those functions. Only (3N-6) internal variables are involved both in the functions and in the equations. The permutation symmetry of the wave functions for identical particles is discussed.Comment: 24 pages, no figure, one Table, RevTex, Will be published in Phys. Rev. A 64, 0421xx (Oct. 2001

    Quasi-periodic X-ray brightness fluctuations in an accreting millisecond pulsar

    Full text link
    The relativistic plasma flows onto neutron stars that are accreting material from stellar companions can be used to probe strong-field gravity as well as the physical conditions in the supranuclear-density interiors of neutron stars. Plasma inhomogeneities orbiting a few kilometres above the stars are observable as X-ray brightness fluctuations on the millisecond dynamical timescale of the flows. Two frequencies in the kilohertz range dominate these fluctuations: the twin kilohertz quasi-periodic oscillations (kHz QPOs). Competing models for the origins of these oscillations (based on orbital motions) all predict that they should be related to the stellar spin frequency, but tests have been difficult because the spins were not unambiguously known. Here we report the detection of kHz QPOs from a pulsar whose spin frequency is known. Our measurements establish a clear link between kHz QPOs and stellar spin, but one not predicted by any current model. A new approach to understanding kHz QPOs is now required. We suggest that a resonance between the spin and general relativistic orbital and epicyclic frequencies could provide the observed relation between QPOs and spin.Comment: Published in the 2003 July 3 issue of Natur
    corecore