557 research outputs found

    Compositeness, Triviality and Bounds on Critical Exponents for Fermions and Magnets

    Full text link
    We argue that theories with fundamental fermions which undergo chiral symmetry breaking have several universal features which are qualitatively different than those of theories with fundamental scalars. Several bounds on the critical indices δ\delta and η\eta follow. We observe that in four dimensions the logarithmic scaling violations enter into the Equation of State of scalar theories, such as λϕ4\lambda\phi^4, and fermionic models, such as Nambu-Jona-Lasinio, in qualitatively different ways. These observations lead to useful approaches for analyzing lattice simulations of a wide class of model field theories. Our results imply that λϕ4\lambda\phi^4 {\it cannot} be a good guide to understanding the possible triviality of spinor QEDQED.Comment: 12 pages, 3 figures (not included), ILL-(TH)-93-2

    Looking for the Logarithms in Four-Dimensional Nambu-Jona-Lasinio Models

    Full text link
    We study the problem of triviality in the four dimensional Nambu-Jona-Lasinio model with discrete chiral symmetry using both large-N expansions and lattice simulations. We find that logarithmic corrections to scaling appear in the equation of state as predicted by the large-N expansion. The data from 16416^4 lattice simulations is sufficiently accurate to distinguish logarithmically trivial scaling from power law scaling. Simulations on different lattice sizes reveal an interesting interplay of finite size effects and triviality. We argue that such effects are qualitatively different for theories based on fundamental scalar rather than fermion fields. Several lessons learned here can be applied to simulations and analyses of more challenging field theories.Comment: 25 pages, 14 ps figure

    Avoided Critical Behavior in O(n) Systems

    Full text link
    Long-range frustrating interactions, even if their strength is infinitesimal, can give rise to a dramatic proliferations of ground or near-ground states. As a consequence, the ordering temperature can exhibit a discontinuous drop as a function of the frustration. A simple model of the doped Mott insulator, where the short-range tendency of the holes to phase separate competes with long-range Coulomb effects, exhibits this "avoided critical" behavior. This model may serve as a paradigm for many other systems.Comment: 4 pages, 2 figure

    Impact of resonance decays on critical point signals in net-proton fluctuations

    Full text link
    The non-monotonic beam energy dependence of the higher cumulants of net-proton fluctuations is a widely studied signature of the conjectured presence of a critical point in the QCD phase diagram. In this work we study the effect of resonance decays on critical fluctuations. We show that resonance effects reduce the signatures of critical fluctuations, but that for reasonable parameter choices critical effects in the net-proton cumulants survive. The relative role of resonance decays has a weak dependence on the order of the cumulants studied with a slightly stronger suppression of critical effects for higher-order cumulants

    Matter-wave interferometry in a double well on an atom chip

    Full text link
    Matter-wave interference experiments enable us to study matter at its most basic, quantum level and form the basis of high-precision sensors for applications such as inertial and gravitational field sensing. Success in both of these pursuits requires the development of atom-optical elements that can manipulate matter waves at the same time as preserving their coherence and phase. Here, we present an integrated interferometer based on a simple, coherent matter-wave beam splitter constructed on an atom chip. Through the use of radio-frequency-induced adiabatic double-well potentials, we demonstrate the splitting of Bose-Einstein condensates into two clouds separated by distances ranging from 3 to 80 microns, enabling access to both tunnelling and isolated regimes. Moreover, by analysing the interference patterns formed by combining two clouds of ultracold atoms originating from a single condensate, we measure the deterministic phase evolution throughout the splitting process. We show that we can control the relative phase between the two fully separated samples and that our beam splitter is phase-preserving

    Nanoscale phase-engineering of thermal transport with a Josephson heat modulator

    Full text link
    Macroscopic quantum phase coherence has one of its pivotal expressions in the Josephson effect [1], which manifests itself both in charge [2] and energy transport [3-5]. The ability to master the amount of heat transferred through two tunnel-coupled superconductors by tuning their phase difference is the core of coherent caloritronics [4-6], and is expected to be a key tool in a number of nanoscience fields, including solid state cooling [7], thermal isolation [8, 9], radiation detection [7], quantum information [10, 11] and thermal logic [12]. Here we show the realization of the first balanced Josephson heat modulator [13] designed to offer full control at the nanoscale over the phase-coherent component of thermal currents. Our device provides magnetic-flux-dependent temperature modulations up to 40 mK in amplitude with a maximum of the flux-to-temperature transfer coefficient reaching 200 mK per flux quantum at a bath temperature of 25 mK. Foremost, it demonstrates the exact correspondence in the phase-engineering of charge and heat currents, breaking ground for advanced caloritronic nanodevices such as thermal splitters [14], heat pumps [15] and time-dependent electronic engines [16-19].Comment: 6+ pages, 4 color figure
    • …
    corecore