250 research outputs found

    Perioperative Cerebral Microbleeds After Adult Cardiac Surgery.

    Get PDF
    Background and Purpose- Cerebral microbleeds (CMBs) have been observed using magnetic resonance imaging in patients with cardiovascular risk factors, cognitive deterioration, small vessel disease, and dementia. They are a well-known consequence of cerebral amyloid angiopathy, chronic hypertension, and diffuse axonal injury, among other causes. However, the frequency and location of new CMBs postadult cardiac surgery, in association with cognition and perioperative risk factors, have yet to be studied. Methods- Pre- and postsurgery magnetic resonance susceptibility-weighted images and neuropsychological tests were analyzed from a total of 75 patients undergoing cardiac surgery (70 men; mean age, 63±10 years). CMBs were identified by a neuroradiologist blinded to clinical details who independently assessed the presence and location of CMBs using standardized criteria. Results- New CMBs were identified in 76% of patients after cardiac surgery. The majority of new CMBs were located in the frontal lobe (46%) followed by the parietal lobe (15%), cerebellum (13%), occipital lobe (12%), and temporal lobe (8%). Patients with new CMBs typically began with a higher prevalence of preexisting CMBs ( P=0.02). New CMBs were associated with longer cardiopulmonary bypass times ( P=0.003), and there was a borderline association with lower percentage hematocrit ( P=0.04). Logistic regression analysis suggested a ≈2% increase in the odds of acquiring new CMBs during cardiac surgery for every minute of bypass time (odds ratio, 1.02; 95% CI, 1.00-1.05; P=0.04). Postoperative neuropsychological decline was observed in 44% of patients and seemed to be unrelated to new CMBs. Conclusions- New CMBs identified using susceptibility-weighted images were found in 76% of patients who underwent cardiac surgery. CMBs were globally distributed with the highest numbers in the frontal and parietal lobes. Our regression analysis indicated that length of cardiopulmonary bypass time and lowered hematocrit may be significant predictors for new CMBs after cardiac surgery. Clinical Trial Registration- URL: http://www.isrctn.com . Unique identifier: 66022965

    Recommendations to improve imaging and analysis of brain lesion load and atrophy in longitudinal studies of multiple sclerosis

    Get PDF
    Focal lesions and brain atrophy are the most extensively studied aspects of multiple sclerosis (MS), but the image acquisition and analysis techniques used can be further improved, especially those for studying within-patient changes of lesion load and atrophy longitudinally. Improved accuracy and sensitivity will reduce the numbers of patients required to detect a given treatment effect in a trial, and ultimately, will allow reliable characterization of individual patients for personalized treatment. Based on open issues in the field of MS research, and the current state of the art in magnetic resonance image analysis methods for assessing brain lesion load and atrophy, this paper makes recommendations to improve these measures for longitudinal studies of MS. Briefly, they are (1) images should be acquired using 3D pulse sequences, with near-isotropic spatial resolution and multiple image contrasts to allow more comprehensive analyses of lesion load and atrophy, across timepoints. Image artifacts need special attention given their effects on image analysis results. (2) Automated image segmentation methods integrating the assessment of lesion load and atrophy are desirable. (3) A standard dataset with benchmark results should be set up to facilitate development, calibration, and objective evaluation of image analysis methods for MS

    A Zebrafish Model of Roberts Syndrome Reveals That Esco2 Depletion Interferes with Development by Disrupting the Cell Cycle

    Get PDF
    The human developmental diseases Cornelia de Lange Syndrome (CdLS) and Roberts Syndrome (RBS) are both caused by mutations in proteins responsible for sister chromatid cohesion. Cohesion is mediated by a multi-subunit complex called cohesin, which is loaded onto chromosomes by NIPBL. Once on chromosomes, cohesin binding is stabilized in S phase upon acetylation by ESCO2. CdLS is caused by heterozygous mutations in NIPBL or cohesin subunits SMC1A and SMC3, and RBS is caused by homozygous mutations in ESCO2. The genetic cause of both CdLS and RBS reside within the chromosome cohesion apparatus, and therefore they are collectively known as “cohesinopathies”. However, the two syndromes have distinct phenotypes, with differences not explained by their shared ontology. In this study, we have used the zebrafish model to distinguish between developmental pathways downstream of cohesin itself, or its acetylase ESCO2. Esco2 depleted zebrafish embryos exhibit features that resemble RBS, including mitotic defects, craniofacial abnormalities and limb truncations. A microarray analysis of Esco2-depleted embryos revealed that different subsets of genes are regulated downstream of Esco2 when compared with cohesin subunit Rad21. Genes downstream of Rad21 showed significant enrichment for transcriptional regulators, while Esco2-regulated genes were more likely to be involved the cell cycle or apoptosis. RNA in situ hybridization showed that runx1, which is spatiotemporally regulated by cohesin, is expressed normally in Esco2-depleted embryos. Furthermore, myca, which is downregulated in rad21 mutants, is upregulated in Esco2-depleted embryos. High levels of cell death contributed to the morphology of Esco2-depleted embryos without affecting specific developmental pathways. We propose that cell proliferation defects and apoptosis could be the primary cause of the features of RBS. Our results show that mutations in different elements of the cohesion apparatus have distinct developmental outcomes, and provide insight into why CdLS and RBS are distinct diseases

    Geomorphic and stratigraphic evidence for an unusual tsunami or storm a few centuries ago at Anegada, British Virgin Islands

    Get PDF
    © The Author(s), 2010. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Natural Hazards 63 (2012): 51-84, doi:10.1007/s11069-010-9622-6.Waters from the Atlantic Ocean washed southward across parts of Anegada, east-northeast of Puerto Rico, during a singular event a few centuries ago. The overwash, after crossing a fringing coral reef and 1.5 km of shallow subtidal flats, cut dozens of breaches through sandy beach ridges, deposited a sheet of sand and shell capped with lime mud, and created inland fields of cobbles and boulders. Most of the breaches extend tens to hundreds of meters perpendicular to a 2-km stretch of Anegada’s windward shore. Remnants of the breached ridges stand 3 m above modern sea level, and ridges seaward of the breaches rise 2.2–3.0 m high. The overwash probably exceeded those heights when cutting the breaches by overtopping and incision of the beach ridges. Much of the sand-and-shell sheet contains pink bioclastic sand that resembles, in grain size and composition, the sand of the breached ridges. This sand extends as much as 1.5 km to the south of the breached ridges. It tapers southward from a maximum thickness of 40 cm, decreases in estimated mean grain size from medium sand to very fine sand, and contains mud laminae in the south. The sand-and-shell sheet also contains mollusks—cerithid gastropods and the bivalve Anomalocardia—and angular limestone granules and pebbles. The mollusk shells and the lime-mud cap were probably derived from a marine pond that occupied much of Anegada’s interior at the time of overwash. The boulders and cobbles, nearly all composed of limestone, form fields that extend many tens of meters generally southward from limestone outcrops as much as 0.8 km from the nearest shore. Soon after the inferred overwash, the marine pond was replaced by hypersaline ponds that produce microbial mats and evaporite crusts. This environmental change, which has yet to be reversed, required restriction of a former inlet or inlets, the location of which was probably on the island’s south (lee) side. The inferred overwash may have caused restriction directly by washing sand into former inlets, or indirectly by reducing the tidal prism or supplying sand to post-overwash currents and waves. The overwash happened after A.D. 1650 if coeval with radiocarbon-dated leaves in the mud cap, and it probably happened before human settlement in the last decades of the 1700s. A prior overwash event is implied by an inland set of breaches. Hypothetically, the overwash in 1650–1800 resulted from the Antilles tsunami of 1690, the transatlantic Lisbon tsunami of 1755, a local tsunami not previously documented, or a storm whose effects exceeded those of Hurricane Donna, which was probably at category 3 as its eye passed 15 km to Anegada’s south in 1960.The work was supported in part by the Nuclear Regulatory Commission under its project N6480, a tsunami-hazard assessment for the eastern United States

    Improving the Characterization of Radiologically Isolated Syndrome Suggestive of Multiple Sclerosis

    Get PDF
    OBJECTIVE: To improve the characterization of asymptomatic subjects with brain magnetic resonance imaging (MRI) abnormalities highly suggestive of multiple sclerosis (MS), a condition named as "radiologically isolated syndrome" (RIS). METHODS: Quantitative MRI metrics such as brain volumes and magnetization transfer (MT) were assessed in 19 subjects previously classified as RIS, 20 demographically-matched relapsing-remitting MS (RRMS) patients and 20 healthy controls (HC). Specific measures were: white matter (WM) lesion volumes (LV), total and regional brain volumes, and MT ratio (MTr) in lesions, normal-appearing WM (NAWM) and cortex. RESULTS: LV was similar in RIS and RRMS, without differences in distribution and frequency at lesion mapping. Brain volumes were similarly lower in RRMS and RIS than in HC (p<0.001). Lesional-MTr was lower in RRMS than in RIS (p = 0.048); NAWM-MTr and cortical-MTr were similar in RIS and HC and lower (p<0.01) in RRMS. These values were particularly lower in RRMS than in RIS in the sensorimotor and memory networks. A multivariate logistic regression analysis showed that 13/19 RIS had ≥70% probability of being classified as RRMS on the basis of their brain volume and lesional-MTr values. CONCLUSIONS: Macroscopic brain damage was similar in RIS and RRMS. However, the subtle tissue damage detected by MTr was milder in RIS than in RRMS in clinically relevant brain regions, suggesting an explanation for the lack of clinical manifestations of subjects with RIS. This new approach could be useful for narrowing down the RIS individuals with a high risk of progression to MS

    Effects of the fungicide metiram in outdoor freshwater microcosms: responses of invertebrates, primary producers and microbes

    Get PDF
    The ecological impact of the dithiocarbamate fungicide metiram was studied in outdoor freshwater microcosms, consisting of 14 enclosures placed in an experimental ditch. The microcosms were treated three times (interval 7 days) with the formulated product BAS 222 28F (Polyram®). Intended metiram concentrations in the overlying water were 0, 4, 12, 36, 108 and 324 μg a.i./L. Responses of zooplankton, macroinvertebrates, phytoplankton, macrophytes, microbes and community metabolism endpoints were investigated. Dissipation half-life (DT50) of metiram was approximately 1–6 h in the water column of the microcosm test system and the metabolites formed were not persistent. Multivariate analysis indicated treatment-related effects on the zooplankton (NOECcommunity = 36 μg a.i./L). Consistent treatment-related effects on the phytoplankton and macroinvertebrate communities and on the sediment microbial community could not be demonstrated or were minor. There was no evidence that metiram affected the biomass, abundance or functioning of aquatic hyphomycetes on decomposing alder leaves. The most sensitive populations in the microcosms comprised representatives of Rotifera with a NOEC of 12 μg a.i./L on isolated sampling days and a NOEC of 36 μg a.i./L on consecutive samplings. At the highest treatment-level populations of Copepoda (zooplankton) and the blue-green alga Anabaena (phytoplankton) also showed a short-term decline on consecutive sampling days (NOEC = 108 μg a.i./L). Indirect effects in the form of short-term increases in the abundance of a few macroinvertebrate and several phytoplankton taxa were also observed. The overall community and population level no-observed-effect concentration (NOECmicrocosm) was 12–36 μg a.i./L. At higher treatment levels, including the test systems that received the highest dose, ecological recovery of affected measurement endpoints was fast (effect period < 8 weeks)
    corecore