63 research outputs found

    Environmental drivers of the leaf nitrogen and phosphorus stoichiometry characteristics of critically endangered Acer catalpifolium

    Get PDF
    Acer catalpifolium is a perennial deciduous broad-leaved woody plant, listed in the second-class protection program in China mainly distributed on the northwest edge of Chengdu plain. However, extensive anthropogenic disturbances and pollutants emissions (such as SO2, NH3 and NOX) in this area have created a heterogeneous habitat for this species and its impacts have not been systematically studied. In this study, we investigated the leaf nitrogen (N) and phosphorus (P) content of A. catalpifolium in the natural distribution areas, and a series of simulation experiments (e.g., various water and light supply regimes, different acid and N deposition levels, reintroduction management) were conducted to analyze responses of N and P stoichiometric characteristics to environmental changes. The results showed that leaf nitrogen content (LNC) was 14.49 ~ 25.44 mg g-1, leaf phosphorus content (LPC) was 1.29~3.81 mg g-1 and the N/P ratio of the leaf (L-N/P) was 4.87~13.93. As per the simulation experiments, LNC of A. catalpifolium is found to be relatively high at strong light conditions (80% of full light), high N deposition (100 and 150 kg N ha-1), low acidity rainwater, reintroduction to understory area or N fertilizer applications. A high level of LPC was found when applied with 80% of full light and moderate N deposition (100 kg N ha-1). L-N/P was high under severe shade (8% of full light), severe N deposition (200 kg N ha-1), and reintroduction to gap and undergrowth habitat; however, low L-N/P was observed at low acidity rainwater or P fertilizer application. The nutrient supply facilitates corresponding elements uptake, shade tends to induce P limitation and soil acidification shows N limitation. Our results provide theoretical guidance for field management and nutrient supply regimes for future protection, population rejuvenation of this species and provide guidelines for conservation and nutrient management strategies for the endangered species

    Hydrocarbon productivities in different Botryococcus strains: comparative methods in product quantification

    Get PDF
    Six different strains of the green microalgae Botryococcus belonging to the A-race or B-race, accumulating alkadiene or botryococcene hydrocarbons, respectively, were compared for biomass and hydrocarbon productivities. Biomass productivity was assessed gravimetrically upon strain growth in the laboratory under defined conditions. Hydrocarbon productivities were measured by three different and independent experimental approaches, including density equilibrium of the intact cells and micro-colonies, spectrophotometric analysis of hydrocarbon extracts, and gravimetric quantitation of eluted hydrocarbons. All three hydrocarbon-quantitation methods yielded similar results for each of the strains examined. The B-race microalgae Botryococcus braunii var. Showa and Kawaguchi-1 constitutively accumulated botryococcene hydrocarbons equivalent to 30% and 20%, respectively, of their overall biomass. The A-race microalgae Botryococcus braunii, varieties Yamanaka, UTEX 2441 and UTEX LB572 constitutively accumulated alkadiene hydrocarbons ranging from 14% to 13% and 10% of their overall biomass, respectively. Botryococcus sudeticus (UTEX 2629), a morphologically different green microalga, had the lowest hydrocarbon accumulation, equal to about 3% of its overall biomass. Results validate the density equilibrium and spectrophotometric analysis methods in the quantitation of botryococcene-type hydrocarbons. These analytical advances will serve in the screening and selection of B. braunii and of other microalgae in efforts to identify those having a high hydrocarbon content for use in commercial applications

    Mineralization of Acephate, a Recalcitrant Organophosphate Insecticide Is Initiated by a Pseudomonad in Environmental Samples

    Get PDF
    An aerobic bacterium capable of breaking down the pesticide acephate (O,S-dimethyl acetyl phosphoramidothioic acid) was isolated from activated sludge collected from a pesticide manufacturing facility. A phylogenetic tree based on the 16 S rRNA gene sequence determined that the isolate lies within the Pseudomonads. The isolate was able to grow in the presence of acephate at concentrations up to 80 mM, with maximum growth at 40 mM. HPLC and LC-MS/MS analysis of spent medium from growth experiments and a resting cell assay detected the accumulation of methamidophos and acetate, suggesting initial hydrolysis of the amide linkage found between these two moieties. As expected, the rapid decline in acephate was coincident with the accumulation of methamidophos. Methamidophos concentrations were maintained over a period of days, without evidence of further metabolism or cell growth by the cultures. Considering this limitation, strains such as described in this work can promote the first step of acephate mineralization in soil microbial communities

    Morphological, Physiological and Photophysiological Responses of Critically Endangered Acer catalpifolium to Acid Stress

    No full text
    Acid rain deposition (AR) has long-lasting implications for the community stability and biodiversity conservation in southwest China. Acer catalpifolium is a critically endangered species in the rain zone of Western China where AR occurs frequently. To understand the effects of AR on the morphology and physiology of A. catalpifolium, we conducted an acid stress simulation experiment for 1.5 years. The morphological, physiological, and photosynthetic responses of A. catalpifolium to the acidity, composition, and deposition pattern of acid stress was observed. The results showed that simulated acid stress can promote the growth of A. catalpifolium via the soil application mode. The growth improvement of A. catalpifolium under nitric-balanced acid rain via the soil application mode was greater than that of sulfuric-dominated acid rain via the soil application mode. On the contrary, the growth of A. catalpifolium was significantly inhibited by acid stress and the inhibition increased with the acidity of acid stress applied via leaf spraying. The inhibitory impacts of nitric-balanced acid rain via the leaf spraying of A. catalpifolium were greater than that of sulfur-dominant acid rain via leaf spraying. The observations presented in this work can be utilized for considering potential population restoration plans for A. catalpifolium, as well as the forests in southwest China

    Comparative Plastome Analyses and Phylogenetic Applications of the Acer Section Platanoidea

    No full text
    The Acer L. (Sapindaceae) is one of the most diverse and widespread genera in the Northern Hemisphere. Section Platanoidea harbours high genetic and morphological diversity and shows the phylogenetic conflict between A. catalpifolium and A. amplum. Chloroplast (cp) genome sequencing is efficient for the enhancement of the understanding of phylogenetic relationships and taxonomic revision. Here, we report complete cp genomes of five species of Acer sect. Platanoidea. The length of Acer sect. Platanoidea cp genomes ranged from 156,262 bp to 157,349 bp and detected the structural variation in the inverted repeats (IRs) boundaries. By conducting a sliding window analysis, we found that five relatively high variable regions (trnH-psbA, psbN-trnD, psaA-ycf3, petA-psbJ and ndhA intron) had a high potential for developing effective genetic markers. Moreover, with an addition of eight plastomes collected from GenBank, we displayed a robust phylogenetic tree of the Acer sect. Platanoidea, with high resolutions for nearly all identified nodes, suggests a promising opportunity to resolve infrasectional relationships of the most species-rich section Platanoidea of Acer
    • …
    corecore