432 research outputs found

    Quantum pathology of static internal imperfections in flawed quantum computers

    Full text link
    Even in the absence of external influences the operability of a quantum computer (QC) is not guaranteed because of the effects of residual one- and two-body imperfections. Here we investigate how these internal flaws affect the performance of a quantum controlled-NOT (CNOT) gate in an isolated flawed QC. First we find that the performance of the CNOT gate is considerably better when the two-body imperfections are strong. Secondly, we find that the largest source of error is due to a coherent shift rather than decoherence or dissipation. Our results suggest that the problem of internal imperfections should be given much more attention in designing scalable QC architectures

    Probing internal bath dynamics by a Rabi oscillator-based detector

    Full text link
    By exact numerical and master equation approaches, we show that a central spin-1/2 can be configured to probe internal bath dynamics. System-bath interactions cause Rabi oscillations in the detector and periodic behavior of fidelity. This period is highly sensitive to the strength of the bath self-interactions, and can be used to calculate the intra-bath coupling

    Kraus decomposition for chaotic environments

    Full text link
    We consider a system interacting with a chaotic thermodynamic bath. We derive an explicit and exact Kraus operator sum representation (OSR) for the open system reduced density. The OSR preserves the Hermiticity, complete positivity and norm. We show that it is useful as a numerical tool by testing it against exact results for a qubit interacting with an isolated flawed quantum computer. We also discuss some interesting qualitative aspects of the OSR

    Seagrass can mitigate negative ocean acidification effects on calcifying algae

    Get PDF
    The ultimate effect that ocean acidification (OA) and warming will have on the physiology of calcifying algae is still largely uncertain. Responses depend on the complex interactions between seawater chemistry, global/local stressors and species-specific physiologies. There is a significant gap regarding the effect that metabolic interactions between coexisting species may have on local seawater chemistry and the concurrent effect of OA. Here, we manipulated CO2 and temperature to evaluate the physiological responses of two common photoautotrophs from shallow tropical marine coastal ecosystems in Brazil: the calcifying alga Halimeda cuneata, and the seagrass Halodule wrightii. We tested whether or not seagrass presence can influence the calcification rate of a widespread and abundant species of Halimeda under OA and warming. Our results demonstrate that under elevated CO2, the high photosynthetic rates of H. wrightii contribute to raise H. cuneata calcification more than two-fold and thus we suggest that H. cuneata populations coexisting with H. wrightii may have a higher resilience to OA conditions. This conclusion supports the more general hypothesis that, in coastal and shallow reef environments, the metabolic interactions between calcifying and non-calcifying organisms are instrumental in providing refuge against OA effects and increasing the resilience of the more OA-susceptible species.E.B. would like to thank the Coordenação de Aperfeiçoamento de Pessoas de Nível Superior (CAPES) for Masters funding. Funding for this project came from the Synergism grant (CNPq 407365/2013-3). We extend our thanks to the Brazil-based Projeto Coral Vivo and its sponsor PetroBras Ambiental for providing the Marine Mesocosm structure and experimental assistance.info:eu-repo/semantics/publishedVersio

    STOCHASTIC DYNAMICS OF LARGE-SCALE INFLATION IN DE~SITTER SPACE

    Get PDF
    In this paper we derive exact quantum Langevin equations for stochastic dynamics of large-scale inflation in de~Sitter space. These quantum Langevin equations are the equivalent of the Wigner equation and are described by a system of stochastic differential equations. We present a formula for the calculation of the expectation value of a quantum operator whose Weyl symbol is a function of the large-scale inflation scalar field and its time derivative. The unique solution is obtained for the Cauchy problem for the Wigner equation for large-scale inflation. The stationary solution for the Wigner equation is found for an arbitrary potential. It is shown that the large-scale inflation scalar field in de Sitter space behaves as a quantum one-dimensional dissipative system, which supports the earlier results. But the analogy with a one-dimensional model of the quantum linearly damped anharmonic oscillator is not complete: the difference arises from the new time dependent commutation relation for the large-scale field and its time derivative. It is found that, for the large-scale inflation scalar field the large time asymptotics is equal to the `classical limit'. For the large time limit the quantum Langevin equations are just the classical stochastic Langevin equations (only the stationary state is defined by the quantum field theory).Comment: 21 pages RevTex preprint styl

    Stochastic Behavior of Effective Field Theories Across Threshold

    Full text link
    We explore how the existence of a field with a heavy mass influences the low energy dynamics of a quantum field with a light mass by expounding the stochastic characters of their interactions which take on the form of fluctuations in the number of (heavy field) particles created at the threshold, and dissipation in the dynamics of the light fields, arising from the backreaction of produced heavy particles. We claim that the stochastic nature of effective field theories is intrinsic, in that dissipation and fluctuations are present both above and below the threshold. Stochasticity builds up exponentially quickly as the heavy threshold is approached from below, becoming dominant once the threshold is crossed. But it also exists below the threshold and is in principle detectable, albeit strongly suppressed at low energies. The results derived here can be used to give a quantitative definition of the `effectiveness' of a theory in terms of the relative weight of the deterministic versus the stochastic behavior at different energy scales.Comment: 32 pages, Latex, no figure

    Effects of ocean acidification on invertebrate settlement at volcanic CO<inf>2</inf> vents

    Get PDF
    We present the first study of the effects of ocean acidification on settlement of benthic invertebrates and microfauna. Artificial collectors were placed for 1 month along pH gradients at CO2 vents off Ischia (Tyrrhenian Sea, Italy). Seventy-nine taxa were identified from six main taxonomic groups (foraminiferans, nematodes, polychaetes, molluscs, crustaceans and chaetognaths). Calcareous foraminiferans, serpulid polychaetes, gastropods and bivalves showed highly significant reductions in recruitment to the collectors as pCO2 rose from normal (336-341 ppm, pH 8.09-8.15) to high levels (886-5,148 ppm) causing acidified conditions near the vents (pH 7.08-7.79). Only the syllid polychaete Syllis prolifera had higher abundances at the most acidified station, although a wide range of polychaetes and small crustaceans was able to settle and survive under these conditions. A few taxa (Amphiglena mediterranea, Leptochelia dubia, Caprella acanthifera) were particularly abundant at stations acidified by intermediate amounts of CO2 (pH 7. 41-7.99). These results show that increased levels of CO2 can profoundly affect the settlement of a wide range of benthic organisms. © 2010 Springer-Verlag

    Ulcerative colitis in a Southern European country: a national perspective

    Get PDF
    BACKGROUND: The incidence, prevalence, and even the clinical behavior of ulcerative colitis (UC) are highly variable in different world regions. In previous studies, Portugal was reported as having a milder clinical behavior. The aim of this study was to apply the Montreal Classification in a large group of UC Portuguese patients in order to describe their clinical characteristics and evaluate variables potentially useful for outcome prediction. METHODS: A cross-sectional study based on data collected from a nationwide online registry was undertaken. RESULTS: In all, 2863 patients with UC were included. Twenty-one percent had ulcerative proctitis, 52% left-sided colitis, and 28% extensive colitis. Sixty percent of patients had taken steroids, 14% immunosuppressors, 1% biologicals, and 4.5% were submitted to surgery. Patients with extensive colitis had more severe activity, needing more steroids, immunosuppressors, and surgery. At the time of diagnosis 61% were less than 40 years old and 5% less than 16. Younger patients also had a more aggressive initial course. Thirty-eight percent of patients had only taken salicylates during the disease course and were characterized by a lower incidence of systemic symptoms at presentation (3.8% versus 8.8%, P < 0.001), fewer extraintestinal manifestations (7.7% versus 24.0%, P < 0.001), and a higher prevalence of proctitis (32.1% versus 10.0%). CONCLUSIONS: A more aggressive phenotype was found in extensive colitis and in the initial course of younger patients, with an increased need for steroids and immunosuppressors. In addition, a significant percentage of patients, particularly with proctitis, showed a milder clinical evolution and were maintained in remission only with salicylates

    Microscopic theory of vortex dynamics in homogeneous superconductors

    Full text link
    Vortex dynamics in fermionic superfluids is carefully considered from the microscopic point of view. Finite temperatures, as well as impurities, are explicitly incorporated. To enable readers understand the physical implications, macroscopic demonstrations based on thermodynamics and fluctuations- dissipation theorems are constructed. For the first time a clear summary and a critical review of previous results are given.Comment: Presentations are made more straightforward. A detailed presentation that why the vortex friction is finite when the geometric phase exists, as required by referees, though I think it is obviou

    Noise and Fluctuations in Semiclassical Gravity

    Full text link
    We continue our earlier investigation of the backreaction problem in semiclassical gravity with the Schwinger-Keldysh or closed-time-path (CTP) functional formalism using the language of the decoherent history formulation of quantum mechanics. Making use of its intimate relation with the Feynman-Vernon influence functional (IF) method, we examine the statistical mechanical meaning and show the interrelation of the many quantum processes involved in the backreaction problem, such as particle creation, decoherence and dissipation. We show how noise and fluctuation arise naturally from the CTP formalism. We derive an expression for the CTP effective action in terms of the Bogolubov coefficients and show how noise is related to the fluctuations in the number of particles created. In so doing we have extended the old framework of semiclassical gravity, based on the mean field theory of Einstein equation with a source given by the expectation value of the energy-momentum tensor, to that based on a Langevin-type equation, where the dynamics of fluctuations of spacetime is driven by the quantum fluctuations of the matter field. This generalized framework is useful for the investigation of quantum processes in the early universe involving fluctuations, vacuum stability and phase transtion phenomena and the non-equilibrium thermodynamics of black holes. It is also essential to an understanding of the transition from any quantum theory of gravity to classical general relativity. \pacs{pacs numbers: 04.60.+n,98.80.Cq,05.40.+j,03.65.Sq}Comment: Latex 37 pages, umdpp 93-216 (submitted to Phys. Rev. D, 24 Nov. 1993
    corecore