We continue our earlier investigation of the backreaction problem in
semiclassical gravity with the Schwinger-Keldysh or closed-time-path (CTP)
functional formalism using the language of the decoherent history formulation
of quantum mechanics. Making use of its intimate relation with the
Feynman-Vernon influence functional (IF) method, we examine the statistical
mechanical meaning and show the interrelation of the many quantum processes
involved in the backreaction problem, such as particle creation, decoherence
and dissipation. We show how noise and fluctuation arise naturally from the CTP
formalism. We derive an expression for the CTP effective action in terms of the
Bogolubov coefficients and show how noise is related to the fluctuations in the
number of particles created. In so doing we have extended the old framework of
semiclassical gravity, based on the mean field theory of Einstein equation with
a source given by the expectation value of the energy-momentum tensor, to that
based on a Langevin-type equation, where the dynamics of fluctuations of
spacetime is driven by the quantum fluctuations of the matter field. This
generalized framework is useful for the investigation of quantum processes in
the early universe involving fluctuations, vacuum stability and phase transtion
phenomena and the non-equilibrium thermodynamics of black holes. It is also
essential to an understanding of the transition from any quantum theory of
gravity to classical general relativity. \pacs{pacs numbers:
04.60.+n,98.80.Cq,05.40.+j,03.65.Sq}Comment: Latex 37 pages, umdpp 93-216 (submitted to Phys. Rev. D, 24 Nov.
1993