444 research outputs found

    Application of semidefinite programming to maximize the spectral gap produced by node removal

    Full text link
    The smallest positive eigenvalue of the Laplacian of a network is called the spectral gap and characterizes various dynamics on networks. We propose mathematical programming methods to maximize the spectral gap of a given network by removing a fixed number of nodes. We formulate relaxed versions of the original problem using semidefinite programming and apply them to example networks.Comment: 1 figure. Short paper presented in CompleNet, Berlin, March 13-15 (2013

    Multigluon tree amplitudes with a pair of massive fermions

    Full text link
    We consider the calculation of n-point multigluon tree amplitudes with a pair of massive fermions in QCD. We give the explicit transformation rules of this kind of massive fermion-pair amplitudes with respect to different reference momenta and check the correctness of them by SUSY Ward identities. Using these rules and onshell BCFW recursion relation, we calculate the analytic results of several n-point multigluon amplitudes.Comment: 15page

    Entropy-Corrected New Agegraphic Dark Energy Model in Horava-Lifshitz Gravity

    Full text link
    In this work, we have considered the entropy-corrected new agegraphic dark energy (ECNADE) model in Horava-Lifshitz gravity in FRW universe. We have discussed the correspondence between ECNADE and other dark energy models such as DBI-essence,Yang-Mills dark energy, Chameleon field, Non-linear electrodynamics field and hessence dark energy in the context of Horava-Lifshitz gravity and reconstructed the potentials and the dynamics of the scalar field theory which describe the ECNADE.Comment: 12 page

    A multiplexed, automated immuno-matrix assisted laser desorption/ionization mass spectrometry assay for simultaneous and precise quantitation of PTEN and p110 alpha in cell lines and tumor tissues

    Get PDF
    The PI3-kinase/AKT/mTOR pathway plays a central role in cancer signaling. While p110 alpha is the catalytic alpha-subunit of PI3-kinase and a major drug target, PTEN is the main negative regulator of the PI3-kinase/AKT/mTOR pathway. PTEN is often down-regulated in cancer, and there are conflicting data on PTEN's role as breast cancer biomarker. PTEN and p110 alpha protein expression in tumors is commonly analyzed by immunohistochemistry, which suffers from poor multiplexing capacity, poor standardization, and antibody crossreactivity, and which provides only semi-quantitative data. Here, we present an automated, and standardized immuno-matrix-assisted laser desorption/ionization mass spectrometry (iMALDI) assay that allows precise and multiplexed quantitation of PTEN and p110 alpha concentrations, without the limitations of immunohistochemistry. Our iMALDI assay only requires a low-cost benchtop MALDI-TOF mass spectrometer, which simplifies clinical translation. We validated our assay's precision and accuracy, with simultaneous enrichment of both target proteins not significantly affecting the precision and accuracy of the quantitation when compared to the PTEN- and p110 alpha-singleplex iMALDI assays (<15% difference). The multiplexed assay's linear range is from 0.6-20 fmol with accuracies of 90-112% for both target proteins, and the assay is free of matrix-related interferences. The inter-day reproducibility over 5-days was high, with an overall CV of 9%. PTEN and p110 alpha protein concentrations can be quantified down to 1.4 fmol and 0.6 fmol per 10 mu g of total tumor protein, respectively, in various tumor tissue samples, including fresh-frozen breast tumors and colorectal cancer liver metastases, and patient-derived xenograft (PDX) tumors.Proteomic

    From antiferromagnetism to high T c weak ferromagnetism manipulated by atomic rearrangement in Ba3NiOs2O9

    Get PDF
    Polycrystalline samples of Ba3NiOs2O9 were synthesized at ambient pressure AP and high pressure HP conditions, respectively. Both samples are electrically semiconducting. The AP Ba3NiOs2O9 crystallizes in the 6 H perovskite structure with space group P6 3 mmc , consisting of face sharing Os2O9 dimer units and corner sharing NiO6 octahedra. Magnetic measurements indicated that AP Ba3NiOs2O9 is antiferromagnetically ordered below 130 K. HP Ba3NiOs2O9 crystallizes in the 6H perovskite structure too, but the face sharing octahedral sites appear to be occupied by both Ni2 and Os5 ions, whereas the corner sharing site is occupied exclusively by Os5 . HP Ba3NiOs2O9 undergoes a high temperature approximate to 400 K weak ferromagnetic transition, which is much different from the antiferromagnetism of the AP phase. The long range magnetic order of HP Ba3NiOs2O9 was confirmed by neutron powder diffraction. X ray magnetic circular dichroism analysis supported ferromagnetic coupling between Os and Ni moments which leads to a spin arrangement, where the ferromagnetic moments mainly arise from Ni2 ion

    Prunella vulgaris: A comprehensive review of chemical constituents, pharmacological effects and clinical applications.

    Get PDF
    Prunella vulgaris (PV) is a perennial herb belonging to the Labiate family and is widely distributed in northeastern Asian countries such as Korea, Japan, and China. It is reported to display diverse biological activities including anti-microbial, anti-cancer, and anti-inflammation as determined by in vitro or in vivo studies. So far, about 200 compounds have been isolated from PV plant and majority of these have been characterized mainly as triterpenoids, sterols and flavonoids, followed by coumarins, phenylpropanoids, polysaccharides and volatile oils. This review summarizes and analyzes the current knowledge on the chemical constituents, pharmacological activities, mechanisms of action and clinical applications of the PV plant including its potential as a future medicinal plant. Although some of the chemical constituents of the PV plant and their mechanism of action have been investigated the biological activities of many of these remain unknown and further clinical trials are required to further enhance its reputation as a medicinal plant

    Effect of microstructure on the stability of retained austenite in transformation-induced-plasticity steels

    Get PDF
    Two Fe-0.2C-1.55Mn-1.5Si (in wt pet) steels, with and without the addition of 0.039Nb (in wt pet), were studied using laboratory rolling-mill simulations of controlled thermomechanical processing. The microstructures of all samples were characterized by optical metallography, X-ray diffraction (XRD), and transmission electron microscopy (TEM). The microstructural behavior of phases under applied strain was studied using a heat-tinting technique. Despite the similarity in the microstructures of the two steels (equal amounts of polygonal ferrite, carbide-free bainite, and retained austenite), the mechanical properties were different. The mechanical properties of these transformation-induced-plasticity (TRIP) steels depended not only on the individual behavior of all these phases, but also on the interaction between the phases during deformation. The polygonal ferrite and bainite of the C-Mn-Si steel contributed to the elongation more than these phases in the C-Mn-Si-Nb-steel. The stability of retained austenite depends on its location within the microstructure, the morphology of the bainite, and its interaction with other phases during straining. Granular bainite was the bainite morphology that provided the optimum stability of the retained austenite.<br /
    • …
    corecore