22 research outputs found

    Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC

    Get PDF

    Bahasa Melayu harus diguna penuh disiplin - Awang Had

    No full text
    Item does not contain fulltextImportance: At present, the choice of noninvasive testing for a diagnosis of significant coronary artery disease (CAD) is ambiguous, but nuclear myocardial perfusion imaging with single-photon emission tomography (SPECT) or positron emission tomography (PET) and coronary computed tomography angiography (CCTA) is predominantly used for this purpose. However, to date, prospective head-to-head studies are lacking regarding the diagnostic accuracy of these imaging modalities. Furthermore, the combination of anatomical and functional assessments configuring a hybrid approach may yield improved accuracy. Objectives: To establish the diagnostic accuracy of CCTA, SPECT, and PET and explore the incremental value of hybrid imaging compared with fractional flow reserve. Design, Setting, and Participants: A prospective clinical study involving 208 patients with suspected CAD who underwent CCTA, technetium 99m/tetrofosmin-labeled SPECT, and [15O]H2O PET with examination of all coronary arteries by fractional flow reserve was performed from January 23, 2012, to October 25, 2014. Scans were interpreted by core laboratories on an intention-to-diagnose basis. Hybrid images were generated in case of abnormal noninvasive anatomical or functional test results. Main Outcomes and Measures: Hemodynamically significant stenosis in at least 1 coronary artery as indicated by a fractional flow reserve of 0.80 or less and relative diagnostic accuracy of SPECT, PET, and CCTA in detecting hemodynamically significant CAD. Results: Of the 208 patients in the study (76 women and 132 men; mean [SD] age, 58 [9] years), 92 (44.2%) had significant CAD (fractional flow reserve .99) using the predefined absolute margin of 10%. Diagnostic accuracy was highest for PET (85%; 95% CI, 80%-90%) compared with that of CCTA (74%; 95% CI, 67%-79%; P = .003) and SPECT (77%; 95% CI, 71%-83%; P = .02). Diagnostic accuracy was not enhanced by either hybrid SPECT and CCTA (76%; 95% CI, 70%-82%; P = .75) or by PET and CCTA (84%; 95% CI, 79%-89%; P = .82), but resulted in an increase in specificity (P = .004) at the cost of a decrease in sensitivity (P = .001). Conclusions and Relevance: This controlled clinical head-to-head comparative study revealed PET to exhibit the highest accuracy for diagnosis of myocardial ischemia. Furthermore, a combined anatomical and functional assessment does not add incremental diagnostic value but guides clinical decision-making in an unsalutary fashion

    Tissue engineering of replacement skin: the crossroads of biomaterials, wound healing, embryonic development, stem cells and regeneration

    No full text
    Advanced therapies combating acute and chronic skin wounds are likely to be brought about using our knowledge of regenerative medicine coupled with appropriately tissue-engineered skin substitutes. At the present time, there are no models of an artificial skin that completely replicate normal uninjured skin. Natural biopolymers such as collagen and fibronectin have been investigated as potential sources of biomaterial to which cells can attach. The first generation of degradable polymers used in tissue engineering were adapted from other surgical uses and have drawbacks in terms of mechanical and degradation properties. This has led to the development of synthetic degradable gels primarily as a way to deliver cells and/or molecules in situ, the so-called smart matrix technology. Tissue or organ repair is usually accompanied by fibrotic reactions that result in the production of a scar. Certain mammalian tissues, however, have a capacity for complete regeneration without scarring; good examples include embryonic or foetal skin and the ear of the MRL/MpJ mouse. Investigations of these model systems reveal that in order to achieve such complete regeneration, the inflammatory response is altered such that the extent of fibrosis and scarring is diminished. From studies on the limited examples of mammalian regeneration, it may also be possible to exploit such models to further clarify the regenerative process. The challenge is to identify the factors and cytokines expressed during regeneration and incorporate them to create a smart matrix for use in a skin equivalent. Recent advances in the use of DNA microarray and proteomic technology are likely to aid the identification of such molecules. This, coupled with recent advances in non-viral gene delivery and stem cell technologies, may also contribute to novel approaches that would generate a skin replacement whose materials technology was based not only upon intelligent design, but also upon the molecules involved in the process of regeneration
    corecore